Towards Adaptive Access Control
Abstract
Access control systems are nowadays the first line of defence of modern IT systems. However, their effectiveness is often compromised by policy miscofigurations that can be exploited by insider threats. In this paper, we present an approach based on machine learning to refine attribute-based access control policies in order to reduce the risks of users abusing their privileges. Our approach exploits behavioral patterns representing how users typically access resources to narrow the permissions granted to users when anomalous behaviors are detected. The proposed solution has been implemented and its effectiveness has been experimentally evaluated using a synthetic dataset.
Origin | Files produced by the author(s) |
---|
Loading...