Conference Papers Year : 2018

State Complexity Characterizations of Parameterized Degree-Bounded Graph Connectivity, Sub-Linear Space Computation, and the Linear Space Hypothesis

Tomoyuki Yamakami
  • Function : Author
  • PersonId : 1038030

Abstract

The linear space hypothesis is a practical working hypothesis, which originally states the insolvability of a restricted 2CNF Boolean formula satisfiability problem parameterized by the number of Boolean variables. From this hypothesis, it follows that the degree-3 directed graph connectivity problem (3DSTCON) parameterized by the number of vertices in a given graph cannot belong to PsubLIN, composed of decision problems computable by polynomial-time, sub-linear-space deterministic Turing machines. This hypothesis immediately implies L$$\ne $$NL and it was used as a solid foundation to obtain new lower bounds on the computational complexity of various NL search and NL optimization problems. The state complexity of transformation refers to the cost of converting one type of finite automata to another type, where the cost is measured in terms of the increase of the number of inner states of the converted automata from that of the original automata. We relate the linear space hypothesis to the state complexity of transforming restricted 2-way nondeterministic finite automata to computationally equivalent 2-way alternating finite automata having narrow computation graphs. For this purpose, we present state complexity characterizations of 3DSTCON and PsubLIN. We further characterize a non-uniform version of the linear space hypothesis in terms of the state complexity of transformation.
Fichier principal
Vignette du fichier
470153_1_En_20_Chapter.pdf (288.01 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01905627 , version 1 (26-10-2018)

Licence

Identifiers

Cite

Tomoyuki Yamakami. State Complexity Characterizations of Parameterized Degree-Bounded Graph Connectivity, Sub-Linear Space Computation, and the Linear Space Hypothesis. 20th International Conference on Descriptional Complexity of Formal Systems (DCFS), Jul 2018, Halifax, NS, Canada. pp.237-249, ⟨10.1007/978-3-319-94631-3_20⟩. ⟨hal-01905627⟩
51 View
39 Download

Altmetric

Share

More