Observational Semantics for Dynamic Logic with Binders
Abstract
The dynamic logic with binders D↓
was recently introduced as a suitable formalism to support a rigorous stepwise development method for reactive software. The commitment of this logic concerning bisimulation equivalence is, however, not satisfactory: the model class semantics of specifications in D↓
is not closed under bisimulation equivalence; there are D↓
-sentences that distinguish bisimulation equivalent models, i.e., D↓
does not enjoy the modal invariance property. This paper improves on these limitations by providing an observational semantics for dynamic logic with binders. This involves the definition of a new model category and of a more relaxed satisfaction relation. We show that the new logic D↓∼
enjoys modal invariance and even the Hennessy-Milner property. Moreover, the new model category provides a categorical characterisation of bisimulation equivalence by observational isomorphism. Finally, we consider abstractor semantics obtained by closing the model class of a specification SP
in D↓
under bisimulation equivalence. We show that, under mild conditions, abstractor semantics of SP
in D↓
is the same as observational semantics of SP
in D↓∼
.
Domains
Origin | Files produced by the author(s) |
---|
Loading...