Time Series Petri Net Models - Data-Driven Process Discovery and Analysis
Conference Papers Year : 2017

Time Series Petri Net Models

Abstract

Operational support as an area of process mining aims to predict the performance of individual cases and the overall business process. Although seasonal effects, delays and performance trends are well-known to exist for business processes, there is up until now no prediction model available that explicitly captures seasonality. In this paper, we introduce time series Petri net models. These models integrate the control flow perspective of Petri nets with time series prediction. Our evaluation on the basis of our prototypical implementation demonstrates the merits of this model in terms of better accuracy in the presence of time series effects.
Fichier principal
Vignette du fichier
440701_1_En_6_Chapter.pdf (498.97 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01651885 , version 1 (29-11-2017)

Licence

Identifiers

Cite

Andreas Solti, Laura Vana, Jan Mendling. Time Series Petri Net Models. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. pp.124-141, ⟨10.1007/978-3-319-53435-0_6⟩. ⟨hal-01651885⟩
111 View
132 Download

Altmetric

Share

More