Context-Aware Plug and Produce for Robotic Aerospace Assembly
Abstract
Aerospace production systems face increasing requirements for flexibility and reconfiguration, along with considerations of cost, utilisation, and efficiency. This drives a need for systems with a small number of automation platforms (e.g. industrial robots) that can make use of a larger number of end effectors that are potentially flexible or multifunctional. This leads to the challenge of ensuring that the configuration and location of each end effector is tracked by the system at all times, even in the face of manual adjustments, to ensure that the correct processes are applied to the product at the right time. We present a solution based on a Data Distribution Service that provides the system with full awareness of the context of its automation platforms and end effectors. The solution is grounded with an example use case from WingLIFT, a research programme led by a large aerospace manufacturer. The WingLIFT project in which this solution was developed builds on the adaptive systems approach from the Evolvable Assembly Systems project, with focus on extending and increasing the aerospace industrial applicability of plug and produce techniques. The design of this software solution is described from multiple perspectives, and accompanied by details of a physical demonstration cell that is in the process of being commissioned.
Origin | Files produced by the author(s) |
---|