The Power of the “Pursuit” Learning Paradigm in the Partitioning of Data - Artificial Intelligence Applications and Innovations Access content directly
Conference Papers Year : 2019

The Power of the “Pursuit” Learning Paradigm in the Partitioning of Data

Abstract

Traditional Learning Automata (LA) work with the understanding that the actions are chosen purely based on the “state” in which the machine is. This modus operandus completely ignores any estimation of the Random Environment’s (RE’s) (specified as $$\mathbb {E}$$) reward/penalty probabilities. To take these into consideration, Estimator/Pursuit LA utilize “cheap” estimates of the Environment’s reward probabilities to make them converge by an order of magnitude faster. This concept is quite simply the following: Inexpensive estimates of the reward probabilities can be used to rank the actions. Thereafter, when the action probability vector has to be updated, it is done not on the basis of the Environment’s response alone, but also based on the ranking of these estimates. While this phenomenon has been utilized in the field of LA, until recently, it has not been incorporated into solutions that solve partitioning problems. In this paper, we will submit a complete survey of how the “Pursuit” learning paradigm can be and has been used in Object Partitioning. The results demonstrate that incorporating this paradigm can hasten the partitioning by a order of magnitude.
Fichier principal
Vignette du fichier
483292_1_En_1_Chapter.pdf (159.13 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02331348 , version 1 (24-10-2019)

Licence

Identifiers

Cite

Abdolreza Shirvani, B. John Oommen. The Power of the “Pursuit” Learning Paradigm in the Partitioning of Data. 15th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), May 2019, Hersonissos, Greece. pp.3-16, ⟨10.1007/978-3-030-19823-7_1⟩. ⟨hal-02331348⟩
36 View
30 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More