Computational Infrastructure of SoilGrids 2.0
Abstract
SoilGrids maps soil properties for the entire globe at medium spatial resolution (250 m cell side) using state-of-the-art machine learning methods. The expanding pool of input data and the increasing computational demands of predictive models required a prediction framework that could deal with large data. This article describes the mechanisms set in place for a geo-spatially parallelised prediction system for soil properties. The features provided by GRASS GIS – mapset and region – are used to limit predictions to a specific geographic area, enabling parallelisation. The Slurm job scheduler is used to deploy predictions in a high-performance computing cluster. The framework presented can be seamlessly applied to most other geo-spatial process requiring parallelisation. This framework can also be employed with a different job scheduler, GRASS GIS being the main requirement and engine.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|