Unsupervised Learning of Robust Representations for Change Detection on Sentinel-2 Earth Observation Images - Environmental Software Systems. Data Science in Action
Conference Papers Year : 2020

Unsupervised Learning of Robust Representations for Change Detection on Sentinel-2 Earth Observation Images

Michelle Aubrun
  • Function : Author
  • PersonId : 1111960
Andres Troya-Galvis
  • Function : Author
  • PersonId : 1111961
Mohanad Albughdadi
Romain Hugues
  • Function : Author
  • PersonId : 1108972
Marc Spigai
  • Function : Author
  • PersonId : 1111962

Abstract

The recent popularity of artificial intelligence techniques and the wealth of free and open access Copernicus data have led to the development of new data analytics applications in the Earth Observation domain. Among them, is the detection of changes on image time series, and in particular, the estimation of levels and superficies of changes. In this paper, we propose an unsupervised framework to detect generic but relevant and reliable changes using pairs of Sentinel-2 images. To illustrate this method, we will present a scenario focusing on the detection of changes in vineyards due to natural hazards such as frost and hail.
Fichier principal
Vignette du fichier
493342_1_En_1_Chapter.pdf (712 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03361874 , version 1 (01-10-2021)

Licence

Identifiers

Cite

Michelle Aubrun, Andres Troya-Galvis, Mohanad Albughdadi, Romain Hugues, Marc Spigai. Unsupervised Learning of Robust Representations for Change Detection on Sentinel-2 Earth Observation Images. 13th International Symposium on Environmental Software Systems (ISESS), Feb 2020, Wageningen, Netherlands. pp.1-6, ⟨10.1007/978-3-030-39815-6_1⟩. ⟨hal-03361874⟩
78 View
46 Download

Altmetric

Share

More