Crowdsourcing Under Attack: Detecting Malicious Behaviors in Waze
Abstract
Social networks that use geolocalization enable receiving data from users in order to provide information based on their collective experience. Specifically, this article is interested in the social network Waze, a real-time navigation application for drivers. This application uses methods for identifying users that are open and free, where people are able to hide their identity by using a pseudonym. In this context, malicious behaviors can emerge, endangering the quality of the reports on which the application is based. We propose a method to detect malicious behavior on Waze, which crawls information from the application, aggregates it and models the data relationships in graphs. Using this model the data is analyzed according to the size of the graph: for large interaction graphs, we use a Sybil detection technique, while for small graphs we propose the use of a threshold-based mechanism to detect targeted behaviors. The results show that it is complex to use the large-scale Sybil attack detection techniques due to parameter tuning. However, good success rates can be achieved to tag users as honest and malicious if there are a small number of interactions between these groups of users. On the other hand, for small graphs, a straightforward analysis can be performed, since the graphs are sparse and the users have a limited number of connections between them, making clear the presence of outliers.
Origin | Files produced by the author(s) |
---|
Loading...