Collective Interpretation and Potential Joint Information Maximization - Intelligent Information Processing VIII
Conference Papers Year : 2016

Collective Interpretation and Potential Joint Information Maximization

Ryotaro Kamimura
  • Function : Author
  • PersonId : 1020702

Abstract

The present paper aims to propose a new type of information-theoretic method called “potential joint information maximization”. The joint information maximization has an effect to reduce the number of jointly fired neurons and then to stabilize the production of final representations. Then, the final connection weights are collectively interpreted by averaging weights produced by different data sets. The method was applied to the data set of rebel participation among youths. The result show that final weights could be collectively interpreted and only one feature could be extracted. In addition, generalization performance could be improved.
Fichier principal
Vignette du fichier
433802_1_En_2_Chapter.pdf (188.17 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01615007 , version 1 (11-10-2017)

Licence

Identifiers

Cite

Ryotaro Kamimura. Collective Interpretation and Potential Joint Information Maximization. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. pp.12-21, ⟨10.1007/978-3-319-48390-0_2⟩. ⟨hal-01615007⟩
235 View
88 Download

Altmetric

Share

More