Semi-paired Probabilistic Canonical Correlation Analysis
Abstract
CCA is a powerful tool for analyzing paired multi-view data. However, when facing semi-paired multi-view data which widely exist in real-world problems, CCA usually performs poorly due to its requirement of data pairing between different views in nature. To cope with this problem, we propose a semi-paired variant of CCA named SemiPCCA based on the probabilistic model for CCA. Experiments with artificially generated samples demonstrate the effectiveness of the proposed method.
Origin | Files produced by the author(s) |
---|