An Architecture for Adaptive Robust Modelling of Wildfire Behaviour under Deep Uncertainty - Environmental Software Systems: Fostering Information Sharing Access content directly
Conference Papers Year : 2013

An Architecture for Adaptive Robust Modelling of Wildfire Behaviour under Deep Uncertainty

Abstract

Wildfires in Europe – especially in the Mediterranean region – are one of the major treats at landscape scale. While their immediate impact ranges from endangering human life to the destruction of economic assets, other damages exceed the spatio-temporal scale of a fire event. Wildfires involving forest resources are associated with intense carbon emissions and alteration of surrounding ecosystems. The induced land cover degradation has also a potential role in exacerbating soil erosion and shallow landslides. A component of the complexity in assessing fire impacts resides in the difference between uncontrolled wildfires and those for which a control strategy is applied. Robust modelling of wildfire behaviour requires dynamic simulations under an array of multiple fuel models, meteorological disturbances and control strategies for mitigating fire damages. Uncertainty is associated to meteorological forecast and fuel model estimation. Software uncertainty also derives from the data-transformation models needed for predicting the wildfire behaviour and its consequences. The complex and dynamic interactions of these factors define a context of deep uncertainty. Here an architecture for adaptive and robust modelling of wildfire behaviour is proposed, following the semantic array programming paradigm. The mathematical conceptualisation focuses on the dynamic exploitation of updated meteorological information and the design flexibility in adapting to the heterogeneous European conditions. Also, the modelling architecture proposes a multi-criteria approach for assessing the potential impact with qualitative rapid assessment methods and more accurate a-posteriori assessment.
Fichier principal
Vignette du fichier
978-3-642-41151-9_35_Chapter.pdf (1.52 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01457467 , version 1 (06-02-2017)

Licence

Attribution

Identifiers

Cite

Daniele De Rigo, Dario Rodriguez-Aseretto, Claudio Bosco, Margherita Di Leo, Jesús San-Miguel-Ayanz. An Architecture for Adaptive Robust Modelling of Wildfire Behaviour under Deep Uncertainty. 10th International Symposium on Environmental Software Systems (ISESS), Oct 2013, Neusiedl am See, Austria. pp.367-380, ⟨10.1007/978-3-642-41151-9_35⟩. ⟨hal-01457467⟩
84 View
105 Download

Altmetric

Share

Gmail Facebook X LinkedIn More