Gene Expression Programming and Trading Strategies - Artificial Intelligence Applications and Innovations
Conference Papers Year : 2013

Gene Expression Programming and Trading Strategies

Georgios Sermpinis
  • Function : Author
  • PersonId : 1000645
Anastasia Fountouli
  • Function : Author
  • PersonId : 1000706
Konstantinos Theofilatos
  • Function : Author
  • PersonId : 992359
Andreas Karathanasopoulos
  • Function : Author
  • PersonId : 1000707

Abstract

This paper applies a Gene Expression Programming (GEP) algorithm to the task of forecasting and trading the SPDR Down Jones Industrial Average (DIA), the SPDR S&P 500 (SPY) and the Powershares Qqq Trust Series 1 (QQQ) exchange traded funds (ETFs). The performance of the algorithm is benchmarked with a simple random walk model (RW), a Moving Average Convergence Divergence (MACD) model, a Genetic Programming (GP) algorithm, a Multi-Layer Perceptron (MLP), a Recurrent Neural Network (RNN) and a Gaussian Mixture Neural Network (GM). The forecasting performance of the models is evaluated in terms of statistical and trading efficiency. Three trading strategies are introduced to further improve the trading performance of the GEP algorithm. This paper finds that the GEP model outperforms all other models under consideration. The trading performance of GEP is further enhanced when the trading strategies are applied.
Fichier principal
Vignette du fichier
978-3-642-41142-7_50_Chapter.pdf (585.69 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01459683 , version 1 (07-02-2017)

Licence

Identifiers

Cite

Georgios Sermpinis, Anastasia Fountouli, Konstantinos Theofilatos, Andreas Karathanasopoulos. Gene Expression Programming and Trading Strategies. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. pp.497-505, ⟨10.1007/978-3-642-41142-7_50⟩. ⟨hal-01459683⟩
558 View
516 Download

Altmetric

Share

More