Investigation of Expert Addition Criteria for Dynamically Changing Online Ensemble Classifiers with Multiple Adaptive Mechanisms
Abstract
We consider online classification problem, where concepts may change over time. A prominent model for creation of dynamically changing online ensemble is used in Dynamic Weighted Majority (DWM) method. We analyse this model, and address its high sensitivity to misclassifications resulting in creation of unnecessary large ensembles, particularly while running on noisy data. We propose and evaluate various criteria for adding new experts to an ensemble. We test our algorithms on a comprehensive selection of synthetic data and establish that they lead to the significant reduction in the number of created experts and show slightly better accuracy rates than original models and non-ensemble adaptive models used for benchmarking.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|
Loading...