Numerical Methods for the Optimal Control of Scalar Conservation Laws - System Modeling and Optimization
Conference Papers Year : 2013

Numerical Methods for the Optimal Control of Scalar Conservation Laws

Abstract

We are interested in a class of numerical schemes for the optimization of nonlinear hyperbolic partial differential equations. We present continuous and discretized relaxation schemes for scalar, one– conservation laws. We present numerical results on tracking typew problems with nonsmooth desired states and convergence results for higher–order spatial and temporal discretization schemes.
Fichier principal
Vignette du fichier
978-3-642-36062-6_14_Chapter.pdf (141.19 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01347531 , version 1 (21-07-2016)

Licence

Identifiers

Cite

Sonja Steffensen, Michael Herty, Lorenzo Pareschi. Numerical Methods for the Optimal Control of Scalar Conservation Laws. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. pp.136-144, ⟨10.1007/978-3-642-36062-6_14⟩. ⟨hal-01347531⟩
124 View
109 Download

Altmetric

Share

More