Automatic Image Annotation and Retrieval Using Hybrid Approach
Abstract
We firstly propose continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding Expectation-Maximization (EM) algorithm is derived to determine the model parameters. Furthermore, we present a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to classify the multi-label data in discriminative learning stage. Since the framework combines the advantages of generative and discriminative learning, it can predict semantic annotation precisely for unseen images. Finally, we conduct a series of experiments on a standard Corel dataset. The experiment results show that our approach outperforms many state-of-the-art approaches.
Origin | Files produced by the author(s) |
---|
Loading...