Online Detection of Anomalous Sub-trajectories: A Sliding Window Approach Based on Conformal Anomaly Detection and Local Outlier Factor
Abstract
Automated detection of anomalous trajectories is an important problem in the surveillance domain. Various algorithms based on learning of normal trajectory patterns have been proposed for this problem. Yet, these algorithms suffer from one or more of the following limitations: First, they are essentially designed for offline anomaly detection in databases. Second, they are insensitive to local sub-trajectory anomalies. Third, they involve tuning of many parameters and may suffer from high false alarm rates. The main contribution of this paper is the proposal and discussion of the Sliding Window Local Outlier Conformal Anomaly Detector (SWLO-CAD), which is an algorithm for online detection of local sub-trajectory anomalies. It is an instance of the previously proposed Conformal anomaly detector and, hence, operates online with well-calibrated false alarm rate. Moreover, SWLO-CAD is based on Local outlier factor, which is a previously proposed outlier measure that is sensitive to local anomalies. Thus, SWLO-CAD has a unique set of properties that address the issues above.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|
Loading...