Nonlinear Optimization of GM(1,1) Model Based on Multi-parameter Background Value - Computer and Computing Technologies in Agriculture V - Part III
Conference Papers Year : 2012

Nonlinear Optimization of GM(1,1) Model Based on Multi-parameter Background Value

Tangsen Zhan
  • Function : Author
  • PersonId : 988303

Abstract

By studying the existing algorithms for background value in GM(1,1), a nonlinear optimization model of GM(1,1) based on multi-parameter background value is given. The paper uses the invertible matrix of the parameter to optimize and estimate the parameters $\hat{a}$; in addition, the parameter estimate $\hat{a}$ obtained from the multi-parameter background value has higher prediction accuracy, thus overcoming the restriction on the prediction based on the fixed average background value in other literatures. the simulated values obtained by the optimized model (NOGM(1,1)) are more precise, and the maximum error is reduced by 15%. The nonlinear optimization model of GM(1,1) based on multi-parameter background value provides algorithms for further study of GM(1,1) model.
Fichier principal
Vignette du fichier
978-3-642-27275-2_2_Chapter.pdf (4 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01361113 , version 1 (06-09-2016)

Licence

Identifiers

Cite

Tangsen Zhan, Hongyan Xu. Nonlinear Optimization of GM(1,1) Model Based on Multi-parameter Background Value. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. pp.15-19, ⟨10.1007/978-3-642-27275-2_2⟩. ⟨hal-01361113⟩
176 View
91 Download

Altmetric

Share

More