SOM-Based Clustering and Optimization of Production
Abstract
An application of clustering methods for production planning is proposed. Hierarchical clustering, k-means and SOM clustering are applied to production data from the company KGL in Slovenia. A database of 252 products manufactured in the company is clustered according to the required operations and product features. Clustering results are evaluated with an average silhouette width for a total data set and the best result is obtained by SOM clustering. In order to make clustering results applicable to industrial production planning, a percentile measure for the interpretation of SOM clusters into the production cells is proposed. The results obtained can be considered as a recommendation for production floor planning that will optimize the production resources and minimize the work and material flow transfer between the production cells.
Origin | Files produced by the author(s) |
---|
Loading...