Design of Supervisory Control System for Ventricular Assist Device
Abstract
When a patient have severe heart diseases, Ventricular Assist Device (VAD) implantation may be necessary. However, the improvement of the interaction between the device and the patient’s behavior is crucial. Currently, the control of these pumps does not follow changes in patient behavior and the devices are no safe. Therefore, if VAD has no faults tolerance and no dynamic behavior according to the cardiovascular system performance, there is a serious limitation on expected results. This research investigates a mechatronic approach for this class of devices based on advanced techniques for control, instrumentation and automation to define a method for developing a hierarchical supervisory control system to control a VAD dynamically and securely. To apply this method, concepts based on Petri nets and Safety Instrumented Systems are used. This innovation reduces the interventions and unnecessary drugs, enabling a reduction of deposable material and patient hospitalization, and contributes to sustainability concept.
Origin | Files produced by the author(s) |
---|
Loading...