A Laplacian of Gaussian-Based Approach for Spot Detection in Two-Dimensional Gel Electrophoresis Images
Abstract
Two-dimension gel electrophoresis (2-DE) is a proteomic technique that allows the analysis of protein profiles expressed in a given cell, tissue or biological system at a given time. The 2-DE images depict protein as spots of various intensities and sizes. Due to the presence of noise, the inhomogeneous background, and the overlap between the spots in 2-DE image, the protein spot detection is not a straightforward process. In this paper, we present an improved protein spot detection approach, which is based on Laplacian of Gaussian algorithm, and we extract the regional maxima by morphological grayscale reconstruction algorithm, which can reduce the impact of noisy and background in spot detection. Experiments on real 2-DE images show that the proposed approach is more reliable, precise and less sensitive to noise than the traditional Laplacian of Gaussian algorithm and it offers a good performance in our gel image analysis software.
Origin | Files produced by the author(s) |
---|
Loading...