A Classroom Observation Model Fitted to Stochastic and Probabilistic Decision Systems
Abstract
This paper focuses on solving the problems of preparing and normalizing data that are captured from a classroom observation, and are linked with significant relevant properties. We adapt these data using a Bayesian model that creates normalization conditions to a well fitted artificial neural network. We separate the method in two stages: first implementing the data variable in a functional multi-factorial normalization analysis using a normalizing constant and then using constructed vectors containing normalization values in the learning and testing stages of the selected learning vector quantifier neural network.
Origin | Files produced by the author(s) |
---|
Loading...