N

N

Case Study on Certifying Distributed Algorithms:
Reducing Intrusiveness
Samira Akili, Kim Vollinger

» To cite this version:

Samira Akili, Kim Véllinger. Case Study on Certifying Distributed Algorithms: Reducing Intrusive-
ness. 8th International Conference on Fundamentals of Software Engineering (FSEN), May 2019,
Tehran, Iran. pp.179-185, 10.1007/978-3-030-31517-7__12 . hal-03769129

HAL Id: hal-03769129
https://inria.hal.science/hal-03769129

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03769129
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

~ederationforintor

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or

minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Case Study on Certifying Distributed
Algorithms: Reducing Intrusiveness

S. Akili and K. Vollinger

Humboldt University of Berlin, Germany
akilisam@cms.hu-berlin.de voellinger@hu-berlin.de

Abstract. Certifying distributed algorithms (CDAs) are a runtime ver-
ification method for distributed systems. A CDA computes additionally
a witness to an input-output pair — a correctness argument for the pair.
The witness is verified at runtime by a distributed checker algorithm.
In this paper, we apply CDAs to an industrial case study of collabo-
rative transport robots serving machines in a factory. In particular, we
present a certifying variant of a distributed bidding algorithm executed
by the robots to assign transport jobs amongst each other. Furthermore,
we introduce overlays in order to organize the communication of the
distributed checker, and compare them regarding their intrusiveness.

1 Introduction

We consider certifying distributed algorithms (CDAs) — a runtime verification
method for distributed systems. A CDA computes a witness w additionally to
an input-output pair (i,0) such that if a witness predicate holds for the triple
(i,0,w), the pair (i,0) is correct. A distributable witness predicate states a prop-
erty in the system by stating properties for each component, and hence can be
decided by a distributed checker algorithm at runtime. As an example, consider
a distributed algorithm where the components of a network decide if the net-
work graph itself is bipartite. In the case of a non-bipartite network graph, an
odd cycle in the graph is a witness since an odd cycle is not bipartite itself.
The witness predicate states that an odd cycle exists in a network for which
the distributed algorithm outputs that its non-bipartite. In [7] a distributable
witness predicate for the example is described. In the typical setup of runtime
verification, a system is instrumented to compute outputs for a monitor decid-
ing if a given property holds. Analogously, a CDA is instrumented to compute a
witness for the checker deciding if an input-output pair is correct. In this paper,
we investigate a case study of transport robots serving machines in a factory [IJ.
Since the robots execute distributed algorithms to achieve collaborative goals,
they can be classified as a multi-agent system. We apply CDAs to verify a dis-
tributed bidding algorithm used to assign transport jobs at runtime. Moreover,
we consider overlays (i.e. communication topologies imposed on the components
of the system) for the distributed checker, and compare them regarding their
intrusiveness (i.e. the degree to which runtime verification affects the system).

Related Work. Certifying sequential algorithms are established [5] but
there is little work on certifying distributed algorithms [I0I8[7J9]. CDAs can
be classified as a distributed and choreographed monitoring approach since the
checker is a distributed algorithm, and as a synchronous monitoring approach
since the system waits for the checker to accept [2]. Overlay networks are a well
established research strand offering sophisticated solutions for various applica-
tions [3]. However, to our knowledge, there is no approach of using overlays to
reduce intrusivenes for runtime verification.

2 Preliminaries: Certifying Distributed Algorithms

We model the communication topology of a distributed system as a connected
undirected graph G = (V, E): a vertex represents a component, an edge a com-
munication channel. A distributed algorithm, running on a distributed system,
consists of a sub-algorithm for each component such that all components to-
gether solve one problem [4]. The input ¢ is distributed such that each com-
ponent v € V has a sub-input i, with i = U,cyi,; analogously for the out-
put. A CDA computes a witness w additionally to its input-output pair (i,0)
such that if a predicate — the witness predicate — holds for the triple (i, 0, w),
the pair (¢,0) is correct [10]. We call a predicate that is defined over a com-
ponent’s sub-input, sub-output and sub-witness a local predicate. A predicate
I' is universally distributable with a local predicate « if for all triples (7,0, w)
holds: Vv € V' : v(iy, 0y, wy) — ['(i,0,w), and existentially distributable if:
Fv €V : Y(iy,0p,w,) — I'(i,0,w). A predicate is distributable if one of
the former applies, or if it is implied by conjuncted and/or disjuncted univer-
sally/existentially distributable predicates [7]. The witness predicate has to be
distributable such that it can be decided by a distributed checker algorithm
at runtime. The sub-checker of component v decides all local predicates over
(iy, 00, w,). Using a spanning tree, the sub-checkers aggregate the evaluated lo-
cal predicates upwards and combine them by logical conjunction or disjunction
depending on whether the according predicate is universally or existentially dis-
tributable; the root decides the witness predicate by combining the evaluated
distributable predicates [9]. Hence, if the distributed checker accepts, the dis-
tributed input-output pair (i,0) is correct. The user of a CDA does not have
to trust the actual algorithm but the checker which is simpler for a well-chosen
witness. Using the framework proposed in [8/9] an implemented checker can be
verified.

3 Case Study: Certifying Distributed Bidding

We conduct a case study on a fleet of collaborative transport robots serving
machines in a factory, provided by INSYSTEMS [1]. In particular, we investigate
distributed bidding which is executed whenever a machine signals that it needs to
be served. The robots communicate via a wireless network by sending broadcast
or unicast messages.

Specification. W.l.o.g. let ID = {1,...n} be the set of the robots’ unique
identifiers. We refer to a robot with ID k € ID as robot k. For a robot k,
the sub-input is its ID (iy := k) and the sub-output is its winner-tuple (o :=
(winnerl Dy, winner Bidy)). The correctness of a distributed bidding is specified
by the following postconditions: all robots agree on the winner (agreement),
the winner exists (ezistence), and the bid of the winner is the maximum of all
bids (mazimum). INSYSTEMS provides different variants for distributed bidding.
However, we treat the algorithm as a black box and ground its certifying variant
on the specification.

In the following, we give a certifying variant of distributed bidding by intro-
ducing a witness, a witness predicate and distributed checker algorithm. More-
over, we compare different overlays organizing the communication of the dis-
tributed checker regarding their intrusiveness.

Distributed Witness. The sub-witness of robot k is its own bid and a
set containing the sub-outputs of the other robots. Hence, wy = (bidy, {o|l €
ID and | # k}. The sub-witnesses are computed during bidding by bookkeeping;
no additional computation is necessary.

Local Predicates. Let yogree, Yewist and Ymaz be local predicates over robot
k’s sub-input iy, sub-output oy, and sub-witness wy. The predicate v4gycc holds
iff o, = oy for all k # 1 € ID, i.e. if k’s winner-tuple equals the winner-tuples
of all other robots. The predicate 7eyis: holds iff & = winnerIDy, i.e. if k chose
itself as a winner. The predicate 7,4, holds iff bid, < winnerBidy, i.e. if k's
bid is less than or equal to the bid of its chosen winner.

Distributable Predicates. Let Igrce, Leqist,; I maz be predicates over the
distributed input i, output o and witness w stating the three properties of the
specification, e.g. if I grce holds agreement is ensured. We forego a formaliza-
tion. The three predicates are distributable with the introduced local predi-
cates. The predicate Iygpce is universally distributable with vggree since for all
triples (4,0, w) holds: Vk € ID,Yagree(ik, 0k, Wr) — Iygree(i,0,w). The pred-
icate Iegist is distributable with Yggree and 7egist since for all triples (7,0, w)
holds: (3k € ID, Yegist(ik, 0k, Wi) A Lagree(t, 0,w)) — Iegist (i, 0,w). The pred-
icate Iggree ensures that there is exactly one winner. The predicate [,qq is
distributable with Yagree and Ymaq since for all triples (i,0,w) holds: (Vk €
ID, Yegist(ik, 0k; W) A Lagree(i,0,w)) — I'mag(i,0,w). The predicate Iggree
ensures that each robot compares its bid with the same winner-bid.

Witness Predicate. A logical conjunction of the predicates [ugree, Leist
and I, is a witness predicate for the specification of distributed bidding.

Distributed Checker. The sub-checker of each robot runs as a separate
process on the robot, and sub-checkers communicate with each other using the
robots’ IDs. The sub-checker of a robot k executes the following tasks:

(1) collecting the winner-tuples for its robot’s sub-witness wy, and deciding the
local predicates Yogree, Yewist a0d Ymae On the triple (i, or, wg),

(2) participating in deciding the distributable predicates I agree> Lezist and I'yqp
on the triple (4, 0, w),

(3) and participating in deciding the witness predicate on the triple (4,0, w).

Note that for an arbitrary (connected) overlay, it is sufficient to consider the
winner-tuples of neighbors in the overlay for task (1) since agreement is ensured
by transitivity over neighborhoods. Hence, for task (1), a sub-checker collects
the winner-tuples of neighboring robots. As the chosen overlay determines the
number of neighbors, it affects the intrusiveness of the tasks. We investigate the
tasks in more detail for each overlay at the end of this Section.

Criteria for Intrusiveness. Intrusiveness denotes the degree to which run-
time verification affects the original system [2]. We evaluate intrusiveness by
the message overhead, runtime and local computation time of the distributed
checker. We measure message overhead as the number of received messages to
reflect the processing overhead a message inflicts, e.g. a broadcast message is
counted once per receiving component. As usual for asynchronous systems, we
measure runtime by assuming that a message is delivered in one time unit [6].
Local computation time denotes the sequential computation time of a robot. In
distributed algorithm analysis, local computation time is neglected when rea-
sonably low but pointed out if a component performs a “global” computation
(i.e. in our case, if the local computation depends on the number of robots) [6].
As message overhead, runtime and local computation of the checker delay the
system and take resources of the robots, we consider these measurements to be
reasonable criteria for intrusiveness.

Communication of Sub-Checkers. We investigate three topologies to or-
ganize the communication of the distributed checker: the original system without
an overlay (complete graph), and two overlays, a star tree and a balanced bi-
nary tree. For each topology, we evaluate the intrusiveness of the tasks (1)-(3).
The results are summed up in the table in Fig. [l We denote if the number of
sub-checkers having a certain local computation time is constant or linear in
the number of components; e.g. ©(n); denotes that a constant number of sub-
checkers has the local computation time @(n), and ©(n), that the number of
sub-checkers having ©(n) is linear in the number of components. Moreover, we
denote if some sub-checkers have nothing to do with a 0 instead of ©(1) to point
out how fairly work is distributed between the sub-checkers. For the overlays,
the first row of local computation is root’s (one of the sub-checkers) effort with
the exception of task (2) for the binary tree where it is the effort of all non-leave
sub-checkers. Note that the complexity classes of task (1) depend on the partic-
ular local predicate, while the complexity classes for the tasks (2) and (3) are
the same for each distributable witness predicate.

Complete Graph Star Balanced Binary Tree

H @ B0 @ [0 (2 3)
Local Computation|©(n), O(n)n O(1)n| 01 O(n)1 O(1)i| 01 O(1), O(1)1

. - - |©M)n 0n 0n |O(1)n On On
Message Overhead [O(n?) 6(n?) - |©Mmn) Omn) OMN)|OHn) O(n) On)
Runtime o) (1) - 1e1) e1) e1)|e@1) O(ogn) O(logn)

Fig.1. The intrusiveness of the tasks (1)-(3) for each topology.

Complete Graph. For task (1), each sub-checker broadcasts the winner-
tuple of its robot and subsequently compares its robot’s winner-tuple with all
other tuples to decide the predicate Ygg4ree. Hence, local computation time is
linear in the number of robots for each sub-checker. For task (2), each sub-
checker broadcasts a triple with its evaluated local predicates, and decides the
distributable predicates with the received triples. Note that by comparing its
robot’s winner-tuple with all other tuples, each sub-checker already decides the
predicate Iy gree by deciding vqgree in task (1) since a robots sub-witness equals
the distributed witness in this case. However to decide the distributable predi-
cates for the maximum and existence property communication is still needed. For
task (3), each sub-checker logically conjuncts the three evaluated distributable
predicates.

Star Tree. For task (1), root broadcasts its winner-tuple and the other
sub-checkers compare their winner-tuple with it. For task (2), each sub-checker
sends the triple of its evaluated local predicates to root. As root decides the
distributable predicates, root’s local computation is linear in the number of
robots. For task (3), root decides the witness predicate and informs the other
sub-checkers by a broadcast.

Balanced Binary Tree. For task (1), each non-leaf sub-checker sends its
winner-tuple to its children, and each child compares its winner-tuple with the
winner-tuple of its parent. For task (2), starting by the leaves, each sub-checker
gets the triple of the evaluated local predicates from its children and combines
it with its own triple. The root holds a triple of the evaluated distributable
predicates. Hence, the runtime is the tree’s depth. For task (3), root decides the
witness predicate and informs all others using the tree.

Comparison. The complete graph and star have the lowest runtime. How-
ever, regarding message overhead and local computation, the complete graph
performs the worst. In the star, only root computes a global computation, while
in the binary tree no global computation occurs. We conclude that the complete
graph is not suitable to organize the communication of the sub-checkers, while
the star and binary tree can be both justified. They reflect a trade-off between
runtime and local computation time which respectively depend on the depth
and the branching factor of a tree. A star is extreme in branching and therefore
minimizes runtime. A chain would be extreme in depth. However, we chose a bi-
nary tree for comparison since its runtime is sub-linear while local computation
time is still constant. A balanced tree additionally restricts the depth. Hence,
the branching factor should be optimized according to the requirements of the
system.

4 Discussion

We applied CDAs to an industrial case study [I]. Particularly, we presented
a certifying variant of distributed bidding to verify it at runtime. Moreover,
we introduced overlays to organize the communication of the sub-checkers, and
compared them regarding their intrusiveness. We concluded that an overlay with

a tree topology improves a quadratic message overhead to a linear one, and that
by adjusting the branching factor, runtime and local computation time can be
balanced out. Our results can be generalized to obtain a generic method to verify
agreement at runtime (e.g. to be reused for consensus problems) using overlays.
Future Work. Note that for a universally distributable witness predicate,
the distributed checker could stop after task (1) if a sub-checker raises an alarm
when detecting that the according local predicate is not satisfied. When choosing
an overlay, as many checkers as possible should be able to raise an alarm. We
reflected that idea e.g. for the binary tree by letting the children check agreement
with their parent. If parents check agreement with their children, leaves (about
half of the components) cannot raise an alarm. For an existentially distributable
witness predicate, a time out could be used: if no sub-checker decides that a
local predicate holds before a time out is reached, the checkers conclude that
the predicate does not hold. However, this could lead to false negatives. Another
criteria for an overlay could be robustness against message loss, e.g. by choosing
neighbors in the overlay according to the physical neighbors. Another direction is
to consider overlays that can be efficiently updated in case of system dynamics.

References

1. proANT Transport Robots . http://www.insystems.de/en/produkte/proant-
transport-roboter/

2. Francalanza, A., Pérez, J.A., Sdnchez, C.: Runtime Verification for Decentralised
and Distributed Systems. In: Lectures on Runtime Verification, pp. 176-210.
Springer (2018)

3. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of
peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials
7(2), 72-93 (2005)

4. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1996)

5. McConnell, R.M., Mehlhorn, K., Naher, S., Schweitzer, P.: Certifying Algorithms.
Computer Science Review 5, 119-161 (2011)

6. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA (2000)

7. Vollinger, K.: Verifying the Output of a Distributed Algorithm Using Certification.
In: International Conference on Runtime Verification. pp. 424-430. Springer (2017)

8. Vollinger, K., Akili, S.: Verifying a Class of Certifying Distributed Programs. In:
NASA Formal Methods Symposium. pp. 373-388. Springer (2017)

9. Vollinger, K., Akili, S.: On a Verification Framework for Certifying Distributed
Algorithms: Distributed Checking and Consistency. In: International Conference
on Formal Techniques for Distributed Objects, Components, and Systems. pp.
161-180. Springer (2018)

10. Vollinger, K., Reisig, W.: Certification of Distributed Algorithms Solving Problems
with Optimal substructure. In: Software Engineering and Formal Methods, pp.
190-195. Springer (2015)

http://www.insystems.de/en/produkte/proant-transport-roboter/
http://www.insystems.de/en/produkte/proant-transport-roboter/

	Case Study on Certifying Distributed Algorithms: Reducing Intrusiveness

