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Abstract. In this paper, Analysis of the stability and solitary waves for a car-

following model on two lanes is carried out. The stability condition of the mod-

el is obtained by using the linear stability theory. We study the nonlinear char-

acteristics of the model and obtain the solutions of Burgers equation, KDV 

equation, and MKDV equation, which can be used to describe density waves in 

three regions (i.e., stable, metastable and unstable), respectively. The analytical 

results show that traffic flow can be stabilized further by incorporating the ef-

fects come from the leading car of the nearest car on neighbor lane into car-

following model. 

Keywords: Car-following Model on Two Lanes, Traffic Flow, Density Waves. 

1 Introduction 

Car-following theory is one of the most important part of modern traffic theory. Since 

1953 when Pipes[1] presented the first model, an increasing number of models have 

been proposed [2-9].In 2002, Jiang et al[6] presented a car-following model called 

full velocity difference model (FVDM).FVDM revealed the complex dynamic charac-

teristics of traffic flow, therefore, various developed models based FVDM were pro-

posed. 

With the development of transportation, study on two-lane traffic has been increas-

ingly necessary. However, early car-following models like FVDM are only subject to 

single lane traffic, thence, many scholars have made a lot of research on two-lane 

traffic and proposed a series of new models, which mainly divided into lattice model 
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and car-following model. Nagatani[10] proposed lattice model on two lane traffic in 

1998. Peng [11-14] extended the two-lane lattice model, and presented a series of new 

models based lattice model of Nagatani. Tang et al [15] presented a car-following 

model on two lanes by considering the lateral effects in traffic. They found that vehi-

cle drivers always worry about the lane changing actions from neighbor lane and the 

consideration of lateral effects could stabilize the traffic flows on both lanes. 

A large of traffic accidents are caused by unreasonable lane changing. In order to 

avoid such accidents, drivers have to worry about the lane changing actions not only 

of the nearest car in neighbor lane but also of the preceding car of the nearest car on 

neighbor lane. In this paper, we propose an extended car-following model on two 

lanes though considering the effects from both the nearest car and its leading car in 

neighbor lane which is rarely studied by others. Then the stability condition of the 

new model is derived by using the stability theory. Next, we obtain the solutions of 

Burgers equation, KDV equation and MKDV equation, which can be used to describe 

density waves in three regions (i.e.,stable, metastable and unstable) respectively. The 

analytical results show that traffic flow can be stabilized further by incorporating the 

effects come from the leading car of the nearest car on neighbor lane into car-

following model. 

2 Model 

In case of two-lane traffic, it is necessary to consider the lateral effects. This is be-

cause plenty of surveys show that most drivers have to be ready to take precautions 

against the near vehicle on neighbor lane due to the suddenly lane changing without 

any alert message. The ‘near vehicle’ on neighbor lane is composed of the nearest 

vehicle and its leading car on neighbor lane. In general ,the distance between one car 

and it’s nearest car on neighbor lane is so small that drivers always judge the lane 

changing action of his/her nearest-lateral car by observing the distance between 

his/her leading car and the nearest-lateral car. Hence, the dynamic equation of the car-

following model on two lanes is as follows [15]: 

 

 
     

2

,

, , , ,2
, , ,

l n

sti l n l n l n l n

l

d x t
f v t x t v t

dt

 
    

 


 (1) 

Where 0,1l   represent the lane number, 
,l n  is the distance between the ln  vehicle 

on lane l  and the leading car of its nearest vehicle on neighbor lane. 

In this paper , Eq.(1) can be rewritten as: 

  (2) 

, ,( ),l l n l n

l

V x t
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 

  is the optimal velocity formulated as 
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    , , , , 1 , 2 1 ,( ),l l n l n l l n l l l n l l n l l n

l

V x t V x V x   

 
          
 

  (3) 

where 1 2, ,l l l   are the weights of axial headway , ( )l nx t and lateral distance
,l n

l

 respec-

tively. 

1 2 1l l l    
 

According to the optimal velocity function presented by Bando [2], the optimal velocity 

function on two lanes is given by 

 
     ,max

, ,tanh tanh
2

l

l l n l n lc lc

v
V x x h h     

 
 (4) 

This velocity function has a turning point at ,l n lc
x h   
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,
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,
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l n lc

l l n
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 
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3 Linear stability analysis 

We apply the linear stability theory to examine the car-following model on two lanes de-

scribed by Eq.(2).The uniform traffic flow is defined by such a state that all vehicles on 

lane l   move with the optimal velocity , ,( ),l l n l n

l

V x t
 
  
 

   and the identical headway lh  

and the lateral distance 
l

l

  ;the relative velocity  
,l n

v t   is zero. The solution  (0)

,l nx t  is 

given by 

  (0)

,l n l l l l l

l

x t h n V h t
 

   
 
，  (6) 

Assuming  ,l ny t  be a small deviation from the steady state  (0)

,l nx t  , we have 

        0

, , ,l n l n l nx t x t y t   (7) 

Substituting the Eq. (6) and Eq. (7) into Eq. (2), we rewrite linearized equation as 

 
 

    
   2

, , ,'

1 , 2 1 ,2 ,
=

l n l n l n

l l l l l l n l l n ll n

dy t d y tdy t
a V h y t

dt dt dt
   

  
       

  

  (8) 

Where    '

, , ,l l n l l n l nV x dV x d x     ，at ,l n l
x h   , and  

,l n
y t     , 1 ,y yl n l nt t   .For a very 

small perturbation  ,l ny t  at  (0)

,l nx t , we can let , 1 , , 1l n l n l ny      . 
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Expanding  ,l ny t in the Fourier-modes,    
,

l l lik n z t

l n ly t Ae


 , we obtain 

          2 '

1 21 1 1l l l lik ik ik ik

l l l l l l l l l lz a V h e e e z z e            
 

 (9) 

Substituting    
2

1 2 ......l l l l lz z ik z ik   into Eq. (9) ,we obtain the first- and second-order  

terms of coefficients in the expression of lz as follows: 

     ' '

1 1 2l l l l l l l lz V h V h     
 

   ' 2

1 2 1 1

2

3 2 2

2

l l l l l l l l l

l

l

aV h z z
z

a

         

 
For small disturbances with long wavelengths, the uniform steady state will become 

unstable when 2lz  is negative. Thus the neutral stability curve is given by 

 

 

 

'

1 20.5 1.5

l l l

ls

l l l

V h
a



  




 
 (10) 

The uniform traffic flow will be unstable if l lsa a  

 

Fig. 1. Phase diagram in the headway-sensitivity space. The parameters related to the models 

are given in Table 1 

The neutral stability curves in parameter space are shown in Fig.1, where the sensitivity

1l l   .from Fig.1 it can be seen that the stable region of both the new model and Tang 

model are larger than stable region of the FVDM. It means the uniform traffic flow has 

been stabilized with taking into account the lateral effects. Furthermore, relative to Tang 

model, the critical point and neutral stability curve of new model are lower, which shows 

that the uniform traffic flow has been further strengthened by adjusting the lateral effects 

from both nearest car and it’s leader car in neighbor lane. The traffic jam is thus relieved 

efficiently. 
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Table 1. parameters related to the models 

 l  1l
 2l

 l  
FVDM 1 0 0 0.2 

TANGM 0.75 0.25 0 0.2 

NEWM 0.6 0.25 0.15 0.2 

4 Nonlinear analysis 

To facilitate the study of the density wave problem in the following three regions 

below, we rewrite Eq. (2) as follows: 

 

 
   

 

   

2

, ,
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, 1 ,
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l
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dt dt
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dt dt


 



       
          

    

   
  

 

 
 (11) 

Where    , 1 , 1 ,,l l n l n l l n

l

V x t V x 

 
    
 

  ,
, , 1 , 2 1 ,l n l l n l l n l l nx x             

4.1 Burger equation  

We now consider the slowly varying behaviors for long waves in the three regions (i.e. 

stable, metastable and unstable).Introduce slow scales for space variable ln and time 

variable t. For 0 1  , we define the slow variable lX and T  

 
2( ),l l lX n bt T t   

 (12) 

Where lb is a constant to be determined. Let 

 , ( , )l n l l lx h R X T  
 (13) 

Substituting Eq. (12) and Eq.(13) into Eq.(11) and expanding to the third order of 

 ,we obtain the following nonlinear partial differential equation 

 

    

   

2 ' 3 ''

' 2 2

1 23 0
2
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l
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 

   

     

 
          
    (14) 
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,
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


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,

2

,''

2

,
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 





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T


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
,

lX

lX


 


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By taking  '

l lb V h  , we eliminate the second-order term of   from Eq. (14) and 

have 

 

     

 
 

 

2
'' ' 2

1 2

'

' 2

1 2

1
3

2

1
                                3

2

l l

l

l l l
T l l l X l l l l l X l

l l

l l
l l l l X l

l l

b b
R V h R R V h R

a a

V h
V h R

a a


  


  

 
            

 

 
          
 

 (15) 

The coefficient  
 '

1 2

1
3 0

2

l l
l l l

l l

V h

a a


            in the stable region satisfies the 

stability criterion. Thus, in the stable region Eq.(15) is the Burgers equation. The solu-

tion of the Burgers equation is as follow: 

 

 
   
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 
  

 

1 1
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'
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1 2 ''

1
,

2 2

1
tanh 3

2 4

n n n n
l

l l

l n n l nl
l l l l

l l l

R X T X
V h T V h T

V h X
V h

a a V h T

   

  
  

 



  
   

 

   
             

 (16) 

Where n  are the coordinates of the intersections of the slopes with the x-axis and n  

are those of the shock fronts. As T  ,  , 0R X T  , which means in stable region all 

density waves eventually evolved into a uniform flow with increasing time. 

4.2 Kdv equation 

We consider the slowly varying behaviors for long waves near the neutral stability 

point. Slow variable lX and T are defined as 

  (17) 

We set the headway as 

  (18) 

Subsitituting Eq.(17).and Eq.(18) into Eq.(11) and expanding to the sixth order of 

 ,we obtain the following nonlinear partial differential equation 

3( ),l l lX n bt T t   

2

, ( , )l n l l lx h R X T  
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where
2

X T
X T


  

 
 . 

Near the neutral stability point, we set 21l

ls

a

a
   ，where

'

1 2

( )

0.5 1.5( )

l l l
ls

l l l

V h
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
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

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By taking  '

l lb V h  ,we eliminate both the third-order and the forth-order term of 

  from Eq.(19) and have 

 3 2 4 2 2

1 2 3 4 5 0
l l l l lT l X l l X l X l X l X lR f R f R R f R f R f R                 (20) 

Where    '
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l l l l l l l

l

f V h b
a
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1
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2
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
  

 
     
   

In order to drive the regularized equation , we make the transformations as follows: 

1 1

2

1
, ,kdv l lkdv l lkdvT f T X f X R R

f
   

 
Thus, we obtain the KDV equation with a  o  correction term. 

 3 2 4 2 2

1 2 3 4 5 0
kdv lkdv lkdv lkdv lkdv lkdvT lkdv X lkdv lkdv X lkdv X lkdv X lkdv X lkdvR f R f R R f R f R f R                 (21) 

We ignore the  o  term and get the KDV equation with the soliton solution 

 

  2
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12 3

l lkdv kdv lkdv kdv

A A
R X T A h X T

  
   

     (22) 

Where 1 2 3

1 5 2 4

21

24 5

f f f
A

f f f f



 , 

Hence, we obtain the soliton solution of the KDV equation 
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A a A a
x t h h n V h t t

V h a a

a A a

a V h V h a   

    
           

     

 
  

      (23) 

4.3 Mkdv equation 

In unstable region we consider the slowly varying behaviors for long waves. Slow 

variable lX and T are defined just as Eq. (17) 

We set the headway as 

 
 , ,l n lc l lx h R X T  

 (24) 

Subsitituting Eq.(17) and Eq.(24) into Eq.(11) and expanding to the fifth order of 
 ,we obtain the following nonlinear partial differential equation 

 

     

   

   

   

2 ' 3 2 ' 2

1 2

4 ' 3

1 2

''' 3 5

' 4

1 2

3 3
2

1
7 7

6 2

1
2

6

1
15 15

24 6

l l

l

l l

l

l
l l l lc X l l l l l l lc l l X l

l
l T l l l l l lc l l X l

l l lc X l l l X T l

l
l l l l lc l l X

a
a b V h R b V h b R

a
a R V h b R

aV h R b R

a
V h b

     

    

 

   

 
          

 

  
        

 


     



 
     
 

   ''' 2 3

1 2

1
3 3 0

12 l

l

l l l l l c X l

R

a V h R  


    


 (25) 

Where  
 

,

,'

,
l n lc

l n

l lc x h

l n

dV x
V h

d x
 





  

 
,

3

,'''

3

,

l n lc

l n

l lc x h

l n

d V x
V h

d x
 





   

Near the critical point  ,lc lch a , taking  21l

lc

a

a
  ,  '

l l lb V h and eliminating both the 

second-order and the third-order term of  ,Eq.(25) can be simplified as 

 3 3 2 4 2 3

1 2 l 3 4 5g +g g g g 0
l l l l lT l X l l X X l X l X lR R R R R R R               (26) 

Where 
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, ,

    
     

'

'

4 1 2 1 22

2 2 1
7 7 15 15 6

2 6 24

l l lc l l l

l l l l l l l l lc

lc lc

V h b
g V h

a a

  
      

   
        



  
 

'

5 1 2

2 1
3 3

6 12

l lc l

l l l

lc

V h
g

a


  

 
    
    

We make such transformations as 
1

1
mT T

g
  1

2

l lm

g
R R

g
  

Then we obtain the modified KDV equation with a  o  correction term. 

 3 3 2 4 2 31 5
2 3 4

1 2

0
l l l l lT lm X lm X lm X lm X lm X lm

g g
R R g R g R g R R

g g

  
            

 
 (27) 

If we ignore  o  term, this is just the modified KDV equation with a kink solution as 

the desired solution 

 

   1
1

2

, tanh
2

l l l

g B
R X T B X Bg T

g

 
  

    (28) 

Where 2 3

2 4 1 5

5

2 3

g g
B

g g g g



 

Thus , we obtain the kink solution of the headway 

 

   

     

 

 

'1
,n 1

2

' '

1 2

'''

'

1

1 tan 1 1
2

7 7 3
1

1
tan 1 7

2 6

lc lc lc
l lc l lc

l l l

l l l l lc l l lc lc
lc

l lc l

lc
l lc l l

l

g B a B a a
x t h h n V h t Bg t

g a a a

V h V h a
h B

V h a

B a
h n V h t B

a

   

 

        
                 

         

    
   

  

  
         

 

   '

2

1
7 1

2

lc
l l l lc

l

a
V h t

a
 

   
     

    

 (29) 

5 Conclusions 

The two-lane car-following model in this paper is the extension of the FVDM in single 

lane. By considering the lateral effects, the model consists not only of the nearest vehi-

cle on neighbor lane but also of its preceding vehicle. Linear analysis of the model 

shows that the consideration of lateral effects of the nearest vehicle on neighbor lane 

could stabilize the traffic flow. The solutions of Burgers equation, KDV equation, and 

   '

1 1 2

1 1
7 7

6 2
l l l l l lcg V h   

 
    
 

 '''

2

1

6
l lcg V h     '

3 1 2

1
3 3

2
l l l l lcg V h    
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MKDV equation have been derived to describe density waves in three regions respec-

tively. 
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