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Abstract. Autonomous vehicles use road images to detecsradentify lanes,
objects around the vehicle and other important gsecf information. This
information retrieved from the road data helps iaking appropriate driving
decisions for autonomous vehicles. Road segmentetisach a technique that
segments the road from the image. Many deep leametworks developed for
semantic segmentation can be fine-tuned for rogmneetation. The paper
presents details of the segmentation of the drieeatea from the road image
using a semantic segmentation network. The semaetimentation network
used segments road into the driveable and altearate separately. Driveable
area and alternately driveable area on a roadeanarttically different, but it is
a difficult computer vision task to differentiatetitveen them since they are
similar in texture, color, and other important feas. However, due to the
development of advanced Deep Convolutional Neuraiwbids and road
datasets, the differentiation was possible. A teaohieved in detecting the
driveable area using a semantic segmentation nketwbeeplLab, on the
Berkley Deep Drive dataset is reported.

Keywords: Road detection, Road segmentation, Driveable areactitst,
Semantic segmentation, Autonomous driving.

1 Introduction

Advanced Driver Assist Systems (ADAS) and autonosndriving technology have
greatly contributed to the explosive growth of fledd of deep learning which was
fueled by the massive collection and availabilifyroad datasets for public usage.
Among the many computer vision tasks involved inA®and Autonomous driving,
road detection has been considered one of the imggirtant topics of research
especially in the scope of level 4 and level 5 ofidg automation [1]. The road
perception algorithms are the first step for anlgssguent path planner which aid in
autonomous navigation. Remarkable progress hasdm®aved in road segmentation
in the last decade both in feature-based and legutmsed approaches. Automatic
driving decisions collision-free on the segmentatioads from vehicles. Often high-
level information about roads such as ego-lanectiete[2], object-lane relationships
[3], etc is required for successful cognitive agti@nsuring collision-free navigation.



With the advent of deep neural networks and pupléslailable datasets that aid in
explicit labelling of road relates features suchdasable area, lane markings, etc
there is a tremendous interest in extending thd dedection problem to drivable area
detection. In fact, much recent research had fatwsethe detection of flat areas
which are considered to be drivable. Such hightl@vermation allow self-driving
cars to act very similarly to human drivers. Thepgrapresents the details of the
implementation of driveable area detection usidgep neural network developed for
semantic segmentation. Driveable area detectionlveg precise segmentation of
ego-lane i.e. the lane of travel of the vehiclewdrich the camera is mounted (ego-
vehicle). The driveable area is segmented basedhenavailability of the lane
markings. The dataset used for training in the arese work presented is Berkeley
Deep Drive (BDD) Dataset [4].

2 Related Work

Many researches and works have been going on Ye soad segmentation problem
since the development of deep neural networks. befare the recent evolution of
deep neural networks, road segmentation has beeectaut using other computer
vision algorithms, but the features learned by DGNiére incomparably good. In a
work, Road images were segmented into parking Jaidswalk and into a road using
ariel and ground views of the image, with inputenfr Camera, GPS, and IMU
systems [5]Caltagirone L et al, in their work, detected roathg DCNN with data
from camera and LIDAR [6]. They have applied FCN arsubset of the KITTI
dataset for the experiment. In another work, aediffit approach was carried out to
detect roads with minimal amounts of labeled datee work used semi-supervised
learning applied to inputs from camera and LIDARadeombined togetherYang X
et.al extracted lane marking and detected roadguaircombination of Recurrent
Neural Network and U-net to reduce the propagatizar and improve the accuracy
of detection [7]. A model based on the conditiaradom field, which takes in inputs
from both camera and LIDAR as random variables, @gmerimented by Xiao L [8].
Various research has been carried out for roadctiete and lane marking. The
introduction of the Berkley DeepDrive dataset gage to the experimentations on
driveable area related research

Semantic segmentation has evolved since the esolofi CNNs had taken heights.
First of such state-of-the-art architectures, wagetbped by Long J et.al [9]. Using
the classification network’s learned features, thedel adapted the classification
network into a fully convolutional network and fibened it for semantic
segmentation. Unlike [9], which has done end-td-arning, the model proposed
by Noh H et.al, which was built on the classifioatinetwork VGG-16, integrated
deep deconvolution network and proposals predidti®h R-CNN model developed
by Girshick R et.al applied convolutions on eachthsd region proposals extracted
from the image and classified the regions into I&ljgl]. This work gave rise to a
new branch of research on combining region progcmad convolutions. Convolution
and deconvolution on the image during segmentatibue to downsampling and
pooling, misses the high-resolution information uiegd for segmentation. In the



model developed by Lin G et.al, to retain the Hig¥el spatial information, residual
connections between the convolution and deconwiutayers were given like
identity mapping [12]. An interesting work by Luc Bombined the sematic
segmentation network with an adversarial networking adversarial training, the
inconsistencies between ground truth and the pwetliecnap were detected and
corrected [13]. Then came the set of models thatcewtrated on dilated
convolutions, that helped in getting the local mfiation along with the global
information, by increasing the receptive field bé thetwork [14,15,16,17]. One such
model is DeepLab which combines deep convolutiaditgted convolutions at
different range, and Conditional random fields.sTimodel gained 79.7 percent mlOU
on PASCAL VOC-2012 dataset.

3 Details of Dataset

To find a suitable dataset for the intended purpafsdriveable area detection, the
datasets available for road data were referred. GBASVOC 2012 dataset[18],
Microsoft COCO dataset [19], ADE20K dataset are esarh the general semantic
segmentation datasets. These datasets contairediffgbjects of vast categories, thus
helpful in training the network to identify any et present in the image. For some
specific objects of interest to be identified by thetwork (e.g. road, car, signal, etc.
for the autonomous driving scenario), the weiglitthhe network can be fine-tuned by
training it with objects specific dataset (e.g. &ats with road objects). Some road-
specific datasets available are Cityscapes daf@€dt KITTI road dataset [21],
Apolloscape dataset [22], Oxford RobotCar Data®8},[Berkley Deep Drive dataset
[4]. Among these, the BDD dataset was chosen basethe merit of large scale
annotations for driveable area segmentation. Thisrination will be helpful in
determining vehicle localization on the road witaige data and in turn be helpful in
decision making. Though few other datasets haveotations done for road
segmentation, these were non-standard and veryl Smalize. BDD dataset is
promising in the scope of its attributes such asmdie nature, a sheer large number of
annotations of images specifically made for driteayea detection. The dataset has
images taken from a variety of geographical la®j environmental and weather
conditions. The dataset has labels , “Directly Bbile Area”, Alternatively Drivable
Area”. “Directly Drivable Area” is the area thatetlriver is currently driving on. The
driver has priority of this area over the otherscdAlternately Drivable Area” is the
area that the driver is not currently driving dout can drive on it by changing lane.
The dataset contains 91626 instances of Direciisallle area and 88392 instances of
Alternatively drivable area. The annotation is givas a mask image which contains
pixel level labels for drivable area, alternativeaaand the background. The dataset is
also annotated for lane markings, object detediath instance segmentation. For all
the work reported in this paper, the BDD dataseages with annotations for
driveable area detection alone are utilized. Tlxedble area annotations consist of a
pair of images for each example. One image isaleRGB image of resolution 1280
x 720 pixels and the other image is the annotati@mye of same size which is also an
RGB image. The annotation image has the ego-laredspin red, other lanes marked



in blue and all other regions of the image in blaglsample image pair is shown in
Fig. 1.

Fig. 1. A Sample Example of Annotation for Driveable Af@etection in BDD Dataset

4 Deep Learning Network

The work presented in the paper is about the impigation details of applying a
popular sematic segmentation network for the pwdos driveable area detection.
Though conceptually driveable map inferencing iwilsir to the general semantic
segmentation problem, the challenges involved & fodrmer is very high. This is
mainly because the classification is between tvgiores which are exactly identical
in terms of all visual properties. The only diffatiating element is the lane marking
which is assumed to be of contrasting the colothefdriveable area (roads). Deep
convolutional neural networks have been the chfic&arious classification tasks in
the computer vision system mainly attributed tohibét-in invariance to local image
transformations. But this property doesn’t meetréguirements of dense inferences
such as semantic segmentation where abstractioriosfation in the image is not a
requirement. Among the Deep CNN based architectangslable for semantic
segmentation in the current work reported in theepaDeepLab [24] is identified to
be suitable for the intended purpose of driveabilea adetection. This is mainly
because of its key property such as the good résolaf the features, good ability to
tackle the problem of objects’ existence at mudtigicales and high localization
accuracy which, in a deep CNN framework is difftdinl obtain due to the invariance
property. DeepLab enjoys these merits by stratdgidacorporating significant
changes in the architecture. Some of the impodhahges introduced in the DeeplLab
which not only has benefited the semantic segmient@iroblem but also to a higher
level of complexities such as the driveable ardaali®n problem as follows:

e Atrous convolution instead of convolution with dosampled filters:
Generally CNNs would have a series of convolutidagérs interleaved with
pooling layer resulting in downsampling of filte’trous convolution does
convolution after the last few pooling layers wihsampled filters instead of
downsampled filters as in the case of regular clutiam. This strategy
basically improves the feature resolution whichvésy valuable in pixel-
level inferences as in the case of driveable astaction. It may be noticed
that the atrous convolution serves as a valuabjgacement for the



deconvolutional layers which is commonly found inosh semantic
segmentation networks [25].

e Atrous spatial pyramid pooling: To address the faobof scale invariance,
generally images of objects acquired at many scatesused. Deeplab
utilizes a pyramid pooling strategy which is a cangionally efficient way
of ensuring scale invariance. The strategy involtres usage of multiple
filters that have complementary fields of view. §t@nsures capturing of
objects as well the context in multiple scales Itasyin the scale invariance
property.

e Fully-connected CRFs: The property of accuratelipaton is incorporated
through the use of fully connected pairwise coodiil random fields.

A high-level block diagram of the network architgret is shown in Fig. 2.
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Fig. 2. Abstract Block Diagram of DeepLab Network

Beyond the specified advantages that DeeplLab spebif addresses some
important advantages that are relevant to the dbiee detection problem from a
practical stand-point are speed, accuracy, andlisitypof the network. Since the
intended application is for a driving scenario fiae nature, accuracy and speed are
primary concerns for any segment of algorithms.e dbtailed block diagram of the
DeeplLab network is presented in Fig. 3.
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Fig. 3. Detailed Block Diagram of DeepLab Network

The implementation of DeepLab network for the daivie area detection is carried
out with Tensorflow API. Tensorflow provides praittied models of DeepLab which



are meant for semantic image segmentation of a vadety of classes. The network
is pre-trained on PASCAL-VOC 2012 dataset. The Wsigf the pre-trained model
which are available in a frozen inference graptusied before the training is initiated
on the BDD driveable dataset. All the frozen infere graphs by default use an
output stride of 8. The backbone of the DeepLalizatl in this work is Xception_65
[26]. The block diagram of a single block of a Deap network is presented in Fig.
4. This network is pre-trained on datasets suchnmageNet, MS-COCO part for
VOC. As mentioned earlier all the training had beety for generic semantic image
segmentation. To ensure robustness the netwonitiglized with pre-trained weights
from PASCAL-VOC. The training is carried out in Bgsed manner to understand the
convergence of the model The key specificationthetraining are listed in Table 1.
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Fig. 4. Xception-65 Block at Entry Flow

Tablel. Key Training Specifications

Parameter Specification
Number of iterations 2000
Atrous Rates 6,12, 18
Output Stride 16
Decoder Output Stride 4
Train crop size 513
Train batch size 4
Fine tuning of batch normalization Yes




5 Resaultsand Conclusion

In the lines of most semantic segmentation benckimg@r mioU (mean intersection
of union) is used as the evaluation metric to usided the performance of the
network. Other evaluation metrics are not presemiidin the scope of this paper.
Sample images from the validation set and the spoeding inference images,
containing three classes viz., driveable arearradtely drivable area, background, are
presented in Fig. 5. The intersection of union isasured between the inference
images and the ground truth in the dataset [19]l for the first 48 images are
presented in Fig. 6. The mean loU are 0.93791450e98885483 for 3 lakhs and 4
lakhs steps respectively. A step here is (Totalbemof training images / Batch size)

Input Image

Inference @ 1 lakh steps Inference @ 2 lakh steps Inference @ 3 lakh steps Inference @ 4 lakh steps

Fig. 5. Sample Segmentation Res.ults
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Fig. 6. loU for first 48 Images from Validaion Set

The loU for driveable area detected using Deeplesthamtic segmentation network is given
in the paper. As part of the future work, driveattea detection would be carried out on state-
of-the-art semantic segmentation networks and coedpaAnd extraction of high level
semantics useful for autonomous driving would bgied out using the detected driveable
area.
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