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Function Space Pooling For Graph
Convolutional Networks

Padraig Corcoran

School of Computer Science and Informatics,
Cardiff University, Wales, UK.
corcoranp@cardiff.ac.uk

Abstract. Convolutional layers in graph neural networks are a funda-
mental type of layer which output a representation or embedding of each
graph vertex. The representation typically encodes information about
the vertex in question and its neighbourhood. If one wishes to perform a
graph centric task, such as graph classification, this set of vertex repre-
sentations must be integrated or pooled to form a graph representation.
In this article we propose a novel pooling method which maps a set of
vertex representations to a function space representation. This method
is distinct from existing pooling methods which perform a mapping to
either a vector or sequence space. Experimental graph classification re-
sults demonstrate that the proposed method generally outperforms most
baseline pooling methods and in some cases achieves best performance.

Keywords: graph neural network - vertex pooling - function space.

1 Introduction

Many real world systems have a relational structure which can be modelled
as a graph. These include physical systems where the bodies and joints corre-
spond to the vertices and edges respectively [20]; robot swarms where robots
and communication links correspond to the vertices and edges respectively [21];
and topological maps where locations and paths correspond to the vertices and
edges respectively [4]. Given this, there exists great potential for the application
of machine learning to graphs. With the great successes of neural networks and
deep learning to the analysis of images and natural language, there has recently
been much research considering the application or generalization of neural net-
works to graphs. In many cases this has resulted in state of the art performance
for many tasks [25].

Graph convolutional is a neural network architecture commonly applied to
graphs which consists of a sequence of convolutional layers. The output of a
sequence of such layers is a set of vertex representations where each element
in this set encodes properties of a corresponding vertex and the vertices in its
neighbourhood. In their seminal work, Gilmer et al. [9] showed that many dif-
ferent types of convolutional layers can be formulated in terms of a framework
containing two steps. In the first step message passing is performed where each
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vertex receives messages from adjacent vertices regarding their current represen-
tation. In the second step, each vertex performs an update of its representation
which is a function of its current representation and the messages it received
in the previous step. Graph convolution is fundamentally different to the more
commonly used image convolution. Unlike an image where each pixel will have
an equal number of adjacent pixels (excluding boundary pixels), each vertex in
a graph may have a different number of adjacent vertices. Furthermore, unlike
an image where the set of pixels adjacent to a given pixel can be ordered, the
set of vertices adjacent to a given vertex cannot be easily ordered. Given these
facts, generalizing image convolution methods to graphs is non-trivial.

If one wishes to perform a vertex centric task such as vertex classification,
then one may operate directly on the set of vertex representations output from
a sequence of convolutional layers. However, if one wishes to perform a graph
centric task such as graph classification, then the set of vertex representations
must somehow be integrated to form a graph representation. We refer to this
integration step as pooling and it represents the focus of this article. Note that,
this step is sometimes referred to as global pooling. Performing pooling repre-
sents a challenging problem for a couple of reasons. Firstly, the size of the set of
vertex representations will equal the number of vertices in the graph in question
and this number will vary from graph to graph. Furthermore, the elements in
this set will not be ordered. Therefore the set of vertex representations cannot
be directly fed as input to feed-forward or recurrent architecture which require
as input an element in a vector space of fixed dimension and an element in a
sequence space respectively.

Commonly employed pooling methods include computing summary statis-
tics of the set of vertex representations such as the mean or sum. However these
simple pooling methods are not a complete invariant in the sense that many
different sets of vertex representations may result in the same graph represen-
tation leading to weak discrimination power [27]. To overcome this issue and
increase discrimination power a number of authors have proposed more sophisti-
cated pooling methods. For example, Ying et al. [29] proposed a pooling method
which performs a hierarchical clustering of the set of vertex representations to
produce an element in a vector space of fixed dimension.

In this article we propose a novel pooling method which maps a set of vertex
representations to a function space representation. This method is illustrated in
Figure 1 in the context of a complete graph classification architecture. The pro-
posed pooling method is parameterized by a single learnable parameter which
controls the discrimination power of the method. This makes the method appli-
cable to both finer and coarser classification tasks which require greater and less
discrimination power respectively. The proposed pooling method is inspired by
related methods in the field of applied topology which map sets of points in R?
to function space representations [1].

The layout of this paper is as follows. Section 2 reviews related works on graph
convolution architectures and pooling methods. Section 3 describes the proposed
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Input Graph Graph Convolutional Set of Vertex Function Space Feed-Forward
Layers Representations Representation Architecture

Fig. 1. The proposed pooling method is illustrated in the context of a complete graph
classification architecture. The input graph is first fed to a sequence of graph convolu-
tional layers which outputs a set of vertex representations. The number of elements in
this set equals the number of vertices in the original graph. This set is next mapped
to a function space representation. This function space representation is then fed to a
feed-forward architecture which outputs a predicted graph class.

pooling method. Section 4 presents an evaluation of this method. Finally section
5 draws some conclusions from this work.

2 Background & Related Works

In the following two subsections we review related works on graph convolution
architectures and pooling methods.

2.1 Graph Convolution Architectures

There exist a wide array of graph convolution architectures. In this section we
only review those architectures representing theoretical breakthroughs and state
of the art. However the interested reader can consult the following review papers
for greater details [31, 26]. Hamilton et al. [10] proposed a graph convolution layer
known as GraphSAGE which updates a vertex representation by first perform-
ing an aggregation of adjacent vertex representations. This aggregation is then
concatenated with the current representation of the vertex in question before
applying a linear transformation and non-linearity. The authors considered the
aggregation functions of mean vertex representation and LSTM (Long Short-
Term Memory) applied to a random ordering of vertex presentations. Xu et al.
[27] proposed to apply a multi-layer perceptron, as opposed to a single layer
which is most common, to the aggregation of adjacent vertex representations
and demonstrated that this improve discrimination power. In a later work the
same authors [28] proposed an architecture known as the jumping knowledge
architecture which allows vertices to aggregate information from neighbouring
vertices over different ranges. The authors showed that this architecture allows
deeper convolutional architectures to be used and outperforms the use of resid-
ual connections commonly used in computer vision applications [12]. Given the
successes of attention based architectures in natural language processing [22],
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Velickovic et al. [23] proposed an attention based architecture for graphs. For a
given vertex this architecture allows different weights to be specified for different
adjacent vertices.

2.2 Pooling Methods

There exist two main categories of pooling methods: those which map the set
of vertex representations to a vector space of fixed dimension and those which
map the set of vertex representations to a sequence space. The output of these
mappings can then be fed as input to a feed-forward or recurrent architecture
respectively. We now review pooling methods belonging to each of these cate-
gories.

The simplest pooling methods for mapping to a vector space of fixed di-
mension involve computing summary statistics such as mean and sum of vertex
representations [7]. Despite the simple nature of these methods, a recent study by
Luzhnica et al. [18] demonstrated that in some cases they can outperform more
complex methods. To improve discrimination power more sophisticated pooling
methods have been proposed. The SortPooling method proposed by Zhang et
al. [30] first sorts the vertices with respect to structural roles in the graph. The
vertex representations corresponding to the first k vertices in this order are then
concatenated to give a fixed dimensional vector. The value k is a fixed hyper-
parameter in the model. Set2Set is a general approach for producing a fixed
dimensional vector space representation of a set which is invariant to the order
in which the elements are processed [24]. Gilmer et al. [9] proposed to use this
method to perform pooling. Ying et al. [29] proposed a pooling method known
as DiffPool which performs a hierarchical clustering of vertex representations
and returns an element in a fixed dimensional vector space. Kearnes et al. [13]
proposed a pooling method based on fuzzy histograms. This method has simi-
larities to that proposed in this article but is formulated in terms of fuzzy theory
as opposed to function spaces. The method proposed in this article is in turn
distinct. Tarlow et al. [17] proposed a pooling method which outputs an ele-
ment in sequence space. Finally, all of the above pooling methods are supervised
methods. Many unsupervised pooling methods have also been proposed but we
do not review them here [2].

3 Function Space Pooling

In this section we present the proposed pooling method. Let graph G = (V, E)
denote a graph we wish to classify where V' and E are the corresponding sets of
vertices and edges respectively. Let [ : V' — X' denote a vertex labelling function
that assigns each vertex v € V' a label [(v) in the finite set X.

Let D be the set of vertex representations output from a sequence of convolu-
tional layers applied to G. We assume that each element in this set is an element
of R™ where n is a fixed hyper-parameter. The proposed pooling method takes
as input D and returns an element in a function space. That is, the method is a
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Fig. 2. A set D of vertex representations output from a sequence of convolutional
layers is displayed in (a) where each element is represented by a red dot. The result of
applying the map S to the set D is the set s(D) displayed in (b). The result of applying
the map F to S(D) with the parameter o = 0.005 is the function p : I — R displayed
in (c). The result of applying the map F' to S(D) with the parameter o = 0.0001 is
the function p : I — R displayed in (d).

map from the space of sets to the space of functions. It contains two steps which
we now describe in turn.

The set of vertex representations D is an object in the space of sets which we
denote 2. Let Sigmoid : R™ — I be the n-dimensional Sigmoid function defined
in Equation 1 where I = {(z1,...,2,) € [0,1]"} is the n-dimensional interval.
In the first step of the proposed pooling method we apply the n-dimensional
Sigmoid elementwise to D to give a map S : 2 — (2. To illustrate this map
consider Figure 2(a) which displays an example set D containing three elements
in R™ where n = 2. The result of applying the map S to this set is illustrated in
Figure 2(b).

1

“ires W

Let g, : R — R be a probability distribution. For the purposes of this work

we used the n-dimensional Gaussian distribution defined in Equation 2 with

mean u and variance 0'2.

Sigmoid(z)

1 — I*’U,TZE*’U. 0'2
gulw) = 5@ @2 2)
To

In the second step of the proposed pooling method we apply a map F : 2 —
LP(I) to S(D). Here LP(I) is the space of real valued functions on I equipped
with the LP-norm defined in Equation 3 [5]. Note that, function addition and
subtraction is performed pointwise in this space.

ey |f<x>f’dx)1/p 3)

The function resulting from the map F' is defined in Definition 1. To illustrate
this map consider again the example set S(D) illustrated in Figure 2(b). Figure
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2(c) displays the function p : I — R resulting from applying the map F' to this
set with a o parameter value of 0.005.

Definition 1 For D € (2 the corresponding function representation p : I — R
is defined in Equation /

)= Y ) )

u€S (D)

The elements of LP(I), and in turn the function representation p : I — R,
are infinite dimensional vector spaces. That is, there are an infinite number
of elements in the domain I of p. We approximate this function as a finite
dimensional vector space by discretizing the function domain using a regular grid
of elements. For example, the image in Figure 2(c) corresponds to a discretizing
of the function domain using a 250 x 250 grid.

The proposed pooling method is parameterized by o in the probability distri-
bution of Equation 2 where this parameter takes a value in the range [0, co]. As
the value of o approaches 0 the probability distribution approaches an indicator
function on the domain I. On the other hand, as the value of o approaches oo
the probability distribution approaches a uniform function on the domain I. For
example, Figures 2(c) and 2(d) display the functions p : I — R resulting from
applying the map F to the set S(D) in Figure 2(b) with o parameter values of
0.005 and 0.0001 respectively.

The parameter o may be interpreted as follows. As the value of o approaches
0 the function representation p : I — R becomes a sum of indicator functions on
the set D of vertex representations. In this case distinct sets D map to distinct
functions where the distance between these functions as defined by the norm
in Equation 3 is greater than zero. On the other hand, as o approaches oo,
differences between the functions are gradually smoothed out and in turn the
distance between the functions gradually reduces. Therefore, one can view the
parameter o as controlling the discrimination power of the method.

4 Results

To evaluate the proposed pooling method we considered the task of graph classi-
fication on a number of datasets. The layout of this section is as follows. Section
4.1 describes the neural network architecture used in all experiments. Section 4.3
describes the datasets considered. Section 4.2 describes the optimization method
used to optimize the network parameters. Finally section 4.4 presents the classi-
fication accuracy achieved by the proposed pooling method relative to a number
of baseline methods.



Function Space Pooling For Graph Convolutional Networks 7

4.1 Network Architecture

Recall from section 3 that G = (V| E) denotes a graph we wish to classify and
[V — X denotes a vertex labelling function where X' is a finite set. In order to
perform classification of G the following feed-forward neural network architecture
was used which consists of six layers.

The first two layers are convolutional layers similarly to the GraphSAGE
convolutional layers [10]. Only two convolutional layers were used because a
number of studies have found that the use of two layers empirically gives best
performance [16].

Let - denote matrix multiplication and CONCAT denote horizontal matrix
concatenation. The kth convolutional layer is implemented using Equation 5
where A is the adjacency matrix corresponding to G, Wy are the layer weights
and by are the layer biases. The weights W}, is a matrix of dimension 2dg_1 X dy,
where dj the dimension of the kth layer. The biases by is a vector of dimension
dy. The term hg denotes a matrix of size |V| x | Y| where each matrix row equals
the one-hot-encoding of an individual vertex label. The term hj denotes a matrix
of size |V'| x dj, where each matrix row equals the representation of an individual
vertex output from the kth convolutional layer and dj is the dimension of this
representation. Note that, since two convolutional layers are used, k takes values
in the set {1,2}. The dimension of the input layer dy is equal to the number
of vertex types since one-hot encoding was used. The dimensions of the two
convolutional layers d; and dy were both set to 20.

hk FCONCAT(hk_l, A- hk—l)

()
hi +ReLu (Wk -h + bk)

The third architecture layer is a fully connected linear layer of dimension
10. The fourth layer is the pooling method used. The fifth layer is another fully
connected linear layer of dimension 20. The final layer is a softmax function and
returns a probability distribution over the classes. The output of the first linear
layer equals the input to the pooling method. Therefore the multi-dimensional
interval corresponding to the domain of the function p in Definition 1 is of
dimension 10. We approximate this function as a finite dimensional vector space
by discretizing the function domain using a regular grid with 3 elements in each
dimension. This gives a finite dimensional vector space of dimension 31 = 59049.

4.2 Optimization

The model parameters to be optimized in the architecture of section 4.1 are
the weights and biases of the convolutional layers, the weights and biases of the
linear layers and the parameter o of the pooling method. In all experiments the
neural network parameters were initialized as follows. All weight matrices in the
convolutional and linear layers were initialized using Kaiming initialization [11].
All biases in the convolutional and linear layers were initialized to zero. Finally,
the parameter ¢ in Equation 2 of the pooling layer was initialized to 0.125.
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For loss function Cross Entropy plus an L? regularization term with weight of
0.2 was used. The Adam optimization algorithm was used to optimize all model
parameters with a learning rate of 1 x 1072 [15]. In all experiments optimization
was performed for 350 data epochs and the model which achieved the minimum
loss during this process was returned. In all cases the optimization procedure
converged well before 350 data epochs.

Pooling Method]| MUTAG |PROTEINSENZYMES

Sum 0.66 + 0.60 | 0.60 = 0.18 | 0.26 £ 0.07
Mean 0.78 & 0.18 | 0.58 4+ 0.16 | 0.30 + 0.05
DiffPool 0.85 +£ 0.11/0.73 + 0.04 {0.32 £ 0.07
SortPooling 0.74 £ 0.11 | 0.72 £ 0.05 | 0.23 &+ 0.04
Set2Set 0.73 & 0.08 | 0.72 £ 0.04 | 0.30 £+ 0.07
Function Space | 0.83 £ 0.11 |0.73 + 0.19 |0.32 + 0.06

Table 1. For each of the MUTAG, PROTEINS and ENZYMES datasets, the mean
classification accuracy of 10-fold cross validation for each pooling method are displayed.

4.3 Datasets

To evaluate the proposed pooling method we used three graph classification
datasets. The datasets in question are commonly used to evaluate graph classi-
fication methods and were obtained from the TU Dortmund University graph
dataset repository [14].

The first dataset was the MUTAG dataset which consists of 188 graphs corre-
sponding to chemical compounds where there are 7 distinct types of vertices. The
classification problem is binary and concerns predicting if a chemical compound
has mutagenicity or not [6].

The second dataset was the PROTEINS dataset which consists of 1113 graphs
corresponding to protein molecules where there are 3 distinct types of vertices.
The classification task is binary and concerns predicting if a protein is an enzyme
or not [3].

The third dataset was the ENZYMES dataset which consists of 600 graphs
corresponding to enzymes where there are 3 distinct types of vertices. The clas-
sification task is multi-class and concerns predicting enzyme class where there
are 6 distinct classes.

4.4 Classification Accuracy

The proposed pooling method was benchmarked against the following five base-
line pooling methods: mean vertex representation, sum of vertex representations,
DiffPool by Ying et al. [29], SortPooling by Zhang et al. [30] and Set2Set by
Vinyals et al. [24]. As described in the background and related works section of
this paper, these are some of the most commonly used pooling methods.
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For all baseline models we used a neural network architecture similar to that
described in section 4.1 with the exception that the pooling layer was replaced
and the dimension of the linear layer before this layer was changed from 10 to
20. All experiments were implemented in Python3 using the PyTorch library
[19] and run on an Nvidia GeForce RTX 2080 GPU. For the baseline pooling
methods we used the corresponding implementations available in the PyTorch
Geometric Python library [8].

For each dataset considered we computed the mean accuracy of 10-fold cross
validation for each pooling method. The results of this analysis are displayed in
Table 1. For each dataset, the proposed pooling method outperformed most base-
line methods and achieved equal best performance on two of the three datasets.
This demonstrates the utility of the proposed pooling method.

5 Conclusions

Pooling is a fundamental type of layer in graph neural networks which involves
compute a representation of the set of vertex representations output from a se-
quence of convolutional layers. In this work we proposed a novel pooling method
which computes a function space representation of the set of vertex represen-
tations. This method is distinct from existing pooling methods which compute
either a vector or sequence space representation.

Experimental results on a number of graph classification benchmark datasets
demonstrate that the proposed method generally outperforms most baseline
pooling methods and in some cases achieves best performance. The benchmark
datasets in question contain graphs corresponding to molecules and chemical
compounds which are the most common types of dataset used to evaluate graph
classification methods. Despite this fact, the proposed pooling method is general
in nature and can be applied to any type of graph. Finally, the authors hope this
work will serve as a platform for future work investigating the use of function
space representations for pooling.
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