N
N

N

HAL

open science

A Clean and Efficient Implementation of Choreography
Synthesis for Behavioural Contracts
Davide Basile, Maurice H. ter Beek

» To cite this version:

Davide Basile, Maurice H. ter Beek. A Clean and Efficient Implementation of Choreography Synthesis
for Behavioural Contracts. 23th International Conference on Coordination Languages and Models

(COORDINATION), Jun 2021, Valletta, Malta. pp.225-238, 10.1007/978-3-030-78142-2_14 .

03387846

HAL Id: hal-03387846
https://inria.hal.science/hal-03387846
Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03387846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Clean and Efficient Implementation of
Choreography Synthesis for
Behavioural Contracts

Davide Basile®® and Maurice H. ter Beek

Formal Methods and Tools Lab
ISTI-CNR, Pisa, Italy

{davide.basile,maurice.terbeek}@isti.cnr.it

Abstract. The Contract Automata Tool is an open-source tool for the
specification, composition and synthesis of coordination of service con-
tracts, including functionalities to deal with modalities and configura-
tions. We discuss an implementation of the abstract parametric synthesis
algorithm firstly introduced in our COORDINATION 2019 paper, com-
prehending most permissive controller, orchestration and choreography
synthesis. The tool’s source code has been redesigned and refactored in
Java 8, and we show the resulting gain in computational efficiency.

Keywords: Service Computing - Contract Automata - Controller Synthesis -
Orchestration - Choreography

1 Introduction

Orchestration and choreography are two coordination policies for service com-
position [40,16,14]. The specifications of services can be provided as behavioural
contracts [5] that expose the interface to other services and are used to compute
contract-based coordination policies.

Contract automata [10] formalise behavioural service contracts in terms of
service offer actions and service request actions that need to match to achieve
agreement among a composition of contracts. Modalities are used to indicate
when an action must be matched (necessary) and when it can be be withdrawn
(permitted) in the synthesised coordination [6]. Composing contracts and syn-
thesising a coordination, by refining a spurious composition, are the two main
operations supporting contracts. Synthesis builds upon results from supervisory
control theory [41,17,26] for synthesising the most permissive controller (mpc for
short), duly revisited for synthesising orchestrations and choreographies in [9].
We are aware of only one other approach to coordinating services by supervi-
sory control theory [2]. Contract automata have been equipped with a proof-of-
concept tool [7] to show the feasibility of the proposed theoretical approach.

http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367

Motivation. According to a recent survey on formal methods among high-
profile experts [23], the debate between “leaving the development of professional
tools to industry” and “academia should invest effort to develop and consolidate
usable tools” has no clear winner. In support of the latter, there is a shared be-
lief that “academia should invest effort to develop and consolidate usable tools”
because “this is the only way to provide technological transfer to industry, [as]
in most cases efficient implementation requires to know a bit about the under-
lying theory”. Indeed, according to [21,24], tool deficiencies (e.g., ease of use)
are rated as one of the top obstacles for the adoption of formal methods by
industry. However, to achieve this industrial transfer, in [30] it is recommended
that “universities need to find ways to incentives industrial collaboration by ad-
justing its system of academic and career credits” and “research support and
funding agencies need to actively encourage tool development and maintenance
beyond prototyping” and “develop flexible funding schemes (in-cash or in-kind)
to support the engineering work that is necessary to transform a prototype imple-
mentation into a demonstrable implementation”. In support of the former, quite
some academics believe that “we should not spend time on polishing the things
that matter for acceptance in industry, such as user interfaces, have round-the-
clock available help desks, liability, etc.”, because “there is no business case for
long term support of (academic) tools; industry needs stability and performance,
academics need to innovate”. In fact, it is evident that few research groups man-
age to work for decades on one tool and have it applied successfully in industry.
We note, however, a gap between going beyond prototyping (e.g., by providing
well-designed, clean and efficient implementations) and going as far as providing
industry-ready tools (e.g., with help desks, industrial certification and floating
licenses). Indeed, as also reported in [23], “the tools we develop should be us-
able (and extensible) by researchers in our own community” and “effort should
be devoted to open-source community efforts”. To this aim, we present a clean
and efficient implementation of theoretical results presented in [9], providing an
open-source tool [18] beyond the prototypical level, which can be reused as an
API (and extended) by other researchers and developers in service coordination,
rather than an off-the-shelf tool, ready to be adopted in industry.

Contribution. In this paper, we discuss improvements in the design and imple-
mentation of the contract automata tool [18]. It has been redesigned according to
the principles of model-based systems engineering (MBSE for short) [42,29] and
those of writing clean and readable code [36,15], which are known to improve re-
liability and understandability and facilitate maintainability and reuse. The tool
has moreover been refactored using lambda expressions and Java Streams as
available in Java 8 [25,43], exploiting parallelism. We are not aware of any other
synthesis algorithm that uses big data-like parallel operations as Java Streams.
The implementation of the abstract parametric synthesis algorithm from [9] and
the mpc, orchestration and choreography synthesis are presented. We recompute
the contracts of the case study in [9] to demonstrate the gain in computational
efficiency of the new implementation, and we briefly address the gain in code
readability and maintainability.

Outline. The paper is organised as follows. In Section 2, we briefly discuss
the tool’s new design. In Section 3, we recall theoretical results on the abstract
synthesis algorithm. In Section 4, we present in detail the refactored synthesis
implementation and discuss its adherence to the specification. In Section 5, we
evaluate the improvement, both in absolute terms and in performance gain. In
Section 6, we present related work whilst Section 7 concludes the paper.

2 Design

The tool’s architecture has been redesigned with the MBSE tool Sparx Enterprise
Architect ! (EA for short) and Eclipse. EA allows to import Eclipse projects to
generate documentation and UML diagrams. The UML class diagram concerning
the main package of the tool, displayed in Fig. 1, has been generated by EA. For
readability, only fields that are relevant for this paper are visible for each class.

class contractAutomata

wenumeration» BasicState
ActionType . CAState
fin: boalean Istate
REQUEST - init: boolean e - lIstate: List<BasicState>
OFFER - label: String {readOnly} - x:float
MATCH - y:float
'aCT\'pE/I\ -targatq\ -inurteq\
CAlabel MSCAIO
CATransition
action: String {readOnly} -abel + convertMSCAintoXML(String, MSCA): File
actType: ActionType freadOnly}f&——— - label: CALabel {readOnly} + load(String): MSCA
offerer: Integer {readOnly} - source: CAState {readOnly} + parseXMLintoMSCA(String): MSCA
rank: Integer {readOnly} - target: CAState {readOnly} + printToFile{String, MSCA): void
requester: Integer {readOnly} [F
«enumeration» MSCATransition
Modality
mod mod: Modality {readOnly}
PERMITTED
URGENT <. isUncontrollableChoreography(Set<? extends MSCATransition, Set<CAState=): boolean FMCA
LAZY + isUncontrollableQrchestration(Set<? extends MSCATransition=, Set<CAStatex>): boolean aut: MSCA
+ satisfiesBranchingCondition{Set<MSCATransition>, Set<CAState>): boolean .
+ orchestration(Proclit): MSCA

-aut

rank: Integer {readOnly}
tra: Set<MSCATransition>

choreography(): MSCA

composition(List<MSCA>, Predicate<MSCATransition>, Integer): MSCA

mpc(): MSCA

orchestration(): MSCA

synthesis(TriPredicate<MSCATransition, Set<MSCATransition>, Set<CAState>>, TriPredicate<MSCATransition Set<MSCATransition=, St <CAState=>): MSGA

o+

Fig. 1. The class diagram of the contract automata tool [18]

The standard UML class diagram is self-explanatory. The input/output func-
tionalities are grouped in a stand-alone class MSCAIQ, used by the application.

! https://sparxsystems.com/products/ea/

The core of the implementation resides in the class MSCA that contains meth-
ods for composing and synthesising contracts, discussed below. The decorator
pattern is used for the class FMCA, which adds the functionality of synthesising
an orchestration for a specific configuration (called a product, cf. [6]).

Another package of the tool, family, concerns the aforementioned functional-
ities, discussed in [6], regarding the possibility of synthesising an orchestration of
a product line (also called family) of service contracts, where each configuration
is in a (partial) ordering relation with other configurations. The functionalities
of this package have not been refactored in Java 8 yet, and do not concern the
contribution discussed in this paper. The repository is available at [18].

The GUI Application One of the advantages of adopting a widely used lan-
guage such as Java is the availability of many resources. In particular, we imple-
mented a GUT application, publicly available in [19]. This application is import-
ing and using both our CAT library discussed in this paper and the mxGraph
library [37] that provides features for displaying interactive diagrams and graphs.
We specialised the GraphEditor example of the library to develop the GUI of
the tool. We wish to emphasise the separation of concerns between the tool’s
usability for end users, addressed by the GUI [19], and the usability of the API
offered to other developers, addressed in this paper and available in [18]. Devel-
opers can use our library as back-end to other software, and efficiency and clean
design of the implementation is our primary concern. Nevertheless, being able to
graphically visualise the computed contracts has been helpful for experimenting
new developments in the theory of contract automata.

3 Specification

In this section, we recall the specification of the abstract synthesis algorithm
from [9] that will be useful to provide some evidence that the implementation in
Section 4 adheres with the specification. This is a fix-point computation where at
each iteration the set of transitions of the automaton is refined (pruning predicate
¢p) and a set of forbidden states R is computed (forbidden predicate ¢). The
synthesis is parametric on these two predicates, which provide information on
when a transition has to be pruned from the synthesised automaton or a state has
to be deemed forbidden. The syntheses of mpc, orchestration and choreography
are obtained by instantiating these two predicates. We refer to MSCA as the set
of (modal service) contract automata, where the set of states is denoted by @ and
the set of transitions by T' (with TH denoting the set of necessary transitions).
For an automaton A, the predicate Dangling(A) contains those states that are
not reachable from the initial state or that cannot reach any final state.

Definition 1 (Abstract synthesis [9]). Let A be an MSCA, and let Ko = A
and Ry = Dangling(Ko). Given two predicates ¢p, ¢5 : T x MSCA x Q — Bool,
we let the abstract synthesis function f(g, 4,) + MSCA X 2Q — MSCA x 29 be
defined as follows:

fop.05)(Kiz1, Rio1) = (Ki, R;), with
Tye, =Tk, \ {t €Tk, ‘ ¢p(t7lci71>Ri71) = tT‘U@}
R, =R, 1U{qg|(g—)=tE€ TE , @5 (t, KCiz1, Ri—1) = true } U Dangling(K;)

The abstract controller is defined in Equation 1 below as the least fixed point

(cf. Theorem 5.2 [9]) where, if the initial state belongs to Rg¢p’¢f), then the
controller is empty, otherwise it is the automaton with the set of transitions

T’C<¢p,¢f) and without states in R,(;¢p’¢f).

(kP07 ROy = sup({ £, 5, (Ko, Ro) | n € N}) (1)

4 Implementation

The implementation has been refactored in Java 8, the latest major feature re-
lease? including lambda expressions and streaming API. Streams are used for
big data-style processing of data structures, incorporating MapReduce-like op-
erations [20]. Streams can be easily parallelised, abstracting from the underlying
realisation with parallel threads. Although a parallel stream can be obtained
with a simple method (parallelStream()), if not carefully used issues may be
encountered, e.g., race conditions. Indeed, the usage of Java 8 Streams is cur-
rently under investigation [32,31,33]. Based on the analysis of 34 Java projects,
two important findings listed in [33] are: “Stream parallelization is not widely
used”, and “Although streams feature performance improving parallelism, devel-
opers tend to struggle with using streams efficiently”. This seems to confirm the
finding of [35], “indicating the difficulty of reasoning [on] concurrent execution
by programmers”, while in [32,31], focusing on evaluating refactoring, it is noted
that “using streams efficiently requires many subtle considerations”.

In our implementation, parallel streams are carefully used to speed-up the
computation of the set of transitions and forbidden states at each iteration. We
both provide an informal argument on the correctness of our implementation
below, confirmed by testing our implementation on the case studies in [9] and [6],
as well as experimental evidence on the efficiency of the new implementation in
Section 5. We start by discussing the parametric synthesis method below.

Lines 2—-3 show the two parameters of the method. Both predicates take three
arguments: the transition under scrutiny, the set of transitions and the set of
forbidden states computed so far. Lines 5-6 are used to store references to the
transitions, states and initial state, which could be lost during the synthesis.
Initially, the set of forbidden states R is composed of dangling states (line 7).
A Boolean flag update is used to flag when the least fixed point is reached. At
each iteration (lines 9-20), the set of transitions is refined with a parallel stream
filtering away those transitions satisfying the pruning predicate (lines 11-13).
Similarly, the set R is updated by adding dangling states due to pruned tran-
sitions (line 14). Source states of transitions satisfying the forbidden predicate

2 https://www.oracle.com/java/technologies/java8.html

=
O ©®NOooE W N R

[I I R R i = S I oy
AW RO O®NO O A W N

are computed using a parallel stream (considering also transitions previously
pruned) and added to R (lines 15-18). Finally, when the fixed point is reached
the dangling transitions are removed (line 21), and if the initial state is not
forbidden (line 25) the synthesised MSCA is returned (line 26).

public MSCA synthesis(
TriPredicate<MSCATransition, Set<MSCATransition>, Set<CAState>> pruningPred,
TriPredicate<MSCATransition, Set<MSCATransition>, Set<CAState>> forbiddenPred)
{
Set<MSCATransition> trbackup = new HashSet<MSCATransition>(this.getTransition());
Set<CAState> statesbackup= this.getStates(); CAState init = this.getInitial();
Set<CAState> R = new HashSet<CAState>(this.getDanglingStates(statesbackup,init)); //R0
boolean update=false;
do{ final Set<CAState> Rf = new HashSet<CAState>(R);
final Set<MSCATransition> trf= new HashSet<MSCATransition>(this.getTransition())
if (this.getTransition().removeAll(this.getTransition().parallelStream()
.filter(x->pruningPred.test (x,trf, Rf))
.collect(Collectors.toSet()))) //Ki
R.addAll(this.getDanglingStates(statesbackup,init));
R.addAll (trbackup.parallelStream()
.filter(x->forbiddenPred.test (x,trf, Rf))
.map (MSCATransition: :getSource)
.collect(Collectors.toSet())); //Ri
update=Rf.size() !=R.size() || trf.size()!=this.getTransition().size();
} while(update);
this.removeDanglingTransitions();
if (R.contains(init)) return null;
return this;

Correctness. We provide an informal argument on the adherence of the im-
plementation with respect to the specification provided in Section 3. Thanks to
the high-level constructs provided by Java, this is quite straightforward since
the distance between the implementation and the specification is narrow.

As already stated, the fix-point computation is implemented as a simple do
while loop, where the Boolean variable update (line 19) is used to check that
the computed sets have not been modified by the last iteration. This is done by
simply checking that their size has not changed. Indeed, only instructions for
removing transitions or adding states to R are invoked at each iteration. The
functional interface TriPredicate is used to type both pruning and forbidden
predicates as functions taking three arguments and returning a Boolean. The
set Ry of Definition 1 is computed by the instruction in line 7, using the method
getDanglingStates that implements the predicate Dangling. This method ba-
sically performs a forward and backward visit of the automaton. Here the cor-
respondence with Definition 1 is obtained by simply observing that Ky = A.
Indeed, the predicate Dangling of Definition 1 takes as arguments the automa-
ton to which the dangling states are computed. In the implementation, such
automaton is the object this to which the method getDanglingStates is in-
voked (basically, IC; in Definition 1 is the object this).

The instructions in lines 11-12 perform the set difference on the set of tran-
sitions, by removing the transitions satisfying the pruning predicate. This is
basically the same as Definition 1. As already stated, the computation of the set
of forbidden states R starts in line 14 by adding the dangling states. In case no
transition has been removed, the set of dangling states is unchanged.

AW N =

AW N o=

Sources of transitions satisfying the forbidden predicate are added in lines 15—
18. Here there is a slight divergence from Definition 1: the abstract synthesis
algorithm only checks the forbidden predicate on necessary transitions. Since
the notion of necessary transition varies depending on whether we are synthe-
sising an mpc, an orchestration or a choreography, in the implementation this
check will be implemented by the forbidden predicate passed as argument to the
synthesis method (see below). Due to the well-known state-explosion problem,
it is expected that, for an average composition, the set of transitions is not of
a small size. Thus, parallel streams are used to efficiently process each element
separately and independently from the other threads, with no concurrency issues.

Instructions in lines 21-22 finalise the automaton to be returned as discussed
in Section 3.

Mpc synthesis. Concerning the synthesis of the mpc below, the property of
agreement is enforced, i.e., no request shall be left unmatched. Thus, a state
is forbidden if it has an outgoing uncontrollable request. Indeed, in the mpc
synthesis, necessary requests are uncontrollable, according to the standard no-
tion of uncontrollability in supervisory control theory, called urgent in contract
automata.

public MSCA mpc(){

return synthesis((x,t,bad) -> bad.contains(x.getTarget()) || x.getLabel().isRequest(),
(x,t,bad) -> bad.contains(x.getTarget()) && x.isUrgent());

}

The synthesis of the mpc is obtained by instantiating the pruning and for-
bidden predicates. The pruning predicate checks if a transition has a forbidden
target state or is a request (line 2). The forbidden predicate selects source states
of necessary transitions (i.e., urgent) whose target is forbidden (line 3).

Orchestration synthesis. The synthesis of the orchestration below is similar
to the one of the mpc, apart from the different notion of necessary request.

public MSCA orchestration(){
return synthesis((x,t,bad) -> bad.contains(x.getTarget()) || x.getLabel().isRequest(),
(x,t,bad) -> bad.contains(x.getTarget()) && x.isUncontrollableOrchestration(t, bad));

In the orchestration, necessary requests are semi-controllable (line 3): basi-
cally, a necessary request becomes uncontrollable if there exists no execution in
which that request is matched, otherwise it is controllable. Intuitively, in an or-
chestration of service contracts the order (among possible interleavings) in which
the necessary requests are matched does not matter, as long as there exists at
least one execution in which the match takes place. The orchestrator is in charge
of driving the services towards executions in agreement [9].

Choreography synthesis. The orchestration assumes the presence of an im-
plicit orchestrator driving the executions toward safe behaviour. In a choreogra-
phy, instead, contract automata are supposed to be able to interact safely on their

o B A

e e e
AW N = O ©

own, without resorting to a central orchestrator. To do so, the property to be en-
forced is called strong agreement, i.e., all requests and offers have to be matched
(this property is also referred to as absence of orphan messages). A property
called branching condition must hold: automata must be able to send offers in-
dependently from the state of other automata. In the choreographic framework,
requests are always permitted, whereas offers can also be necessary. Necessary
offers use semi-controllability for choreographies, which is weaker than uncon-
trollability yet stronger than the semi-controllable notion used in the synthesis
of orchestration. Indeed, compared to orchestrations, an additional constraint
must hold: the transitions matching the necessary offer must share the same
source state. This is because the automata must be able to interact correctly by
only using local information.

public MSCA choreography(){
MSCA aut = this;
MSCATransition toRemove=null;
do {
aut = aut.synthesis((x,t,bad) -> !x.getLabel().isMatch()||bad.contains(x.getTarget()),
(x,t,bad) -> bad.contains(x.getTarget()) && x.isUncontrollableChoreography(t, bad));
if (aut==null) break;
final Set<MSCATransition> trf = aut.getTransition();
toRemove=(aut.getTransition() .parallelStream()
.filter(x->!x.satisfiesBranchingCondition(trf, new HashSet<CAState>()))
.findAny () .orElse(null));
} while (aut.getTransition().remove(toRemove));
return aut;

}

The choreography synthesis algorithm iteratively calls the synthesis method
using semi-controllability for choreographies in the forbidden predicate and
strong agreement in the pruning predicate (lines 5-6). After reaching the fixed
point, a transition that violates the branching condition is non-deterministically
selected and removed (lines 9-11). Depending on which transition is selected
and removed, different choreographies can be obtained. The synthesis abstracts
away from the way in which transitions violating the branching condition are
selected. Notably, removing only one such transition at the end of each synthesis
invocation allows to remove a smaller number of transitions than, for example,
removing all of them at the first iteration. The iteration continues until there are
no transitions violating the branching condition. An alternative implementation
could contain only one call to the synthesis method, similarly to the orchestration
and mpc methods. It would suffice to only use the instructions in lines 6-7 by
moving the branching condition check in line 10 inside the pruning predicate in
line 5. In this way, transitions violating the branching condition would be pruned
at each step of the called synthesis algorithm, and this method would compute a
smaller, possibly empty choreography. The specification did not fix any strategy
for selecting which transition violating the branching condition should be pruned
and when. This indeed could be decided according to different criteria.

Table 1. Improvement in computational runtime (ms) of the current tool version [18].
All experiments run on a machine with Processor Intel(R) Core(TM) i7-8500Y CPU at
1.50 GHz, 1601 Mhz, 2 Core(s), 4 Logical Processor(s), 16 GB RAM, 64-bit Windows 10.

composition orchestration choreography

runtime current runtime runtime current runtime runtime current runtime

in [9] runtime speedup in [9] runtime speedup in [9] runtime speedup
A; 65594 1312 49.99x 715216 2872 249.03x - - -
Az 66243 1006 65.85x - - - 459311 1604 286.35x

5 Evaluation

A rough measure of the improvement for what concerns code readability and
maintainability can be obtained by comparing the lines of source code (LOC
for short) with those used in the previous prototypical implementation [22]. The
previous choreography synthesis used 211 LOC, while the current implementa-
tion uses only 14 (choreography) + 24 (synthesis) LOC. Similarly, the previous
orchestration synthesis used 178 LOC, which have been refactored in 2 (orches-
tration) + 24 (synthesis) LOC. The synthesis method is factorised for orches-
tration, choreography and mpc, which was not possible before, so reducing code
duplication. Finally, UML diagrams (cf. Fig. 1) provide the benefits of graphical
documentation of the architecture of the tool that was not previously available.
To evaluate the gain in efficiency of the current implementation [18], we
compare its performance with that of the previous implementation [22], which
was programmed using quick incremental patches over the years and without
parallelism. In [9], the previous implementation was applied to a case study, with
the performances reported in Examples 2.5, 3.4 and 4.6 and recalled in Table 1.
Table 1 also reports the data of applying the current implementation and the
speedup, showcasing the improvement obtained thanks to redesigning the tool,
cleaning the code and refactoring the algorithms by using parallel streams.

6 Related Work

The literature offers several approaches to the problem of synthesising a chore-
ography of interacting components, with supporting tools. Recently, a tool chain
for choreographic design has been proposed in [28]. Choreographies are designed
using a kind of BPMN2 Choreography Diagrams, but equipped with a formal
semantics. The operation of closure at the semantic level is used to insert miss-
ing behaviour, which can be suggested as amendments to be validated by a
human. Our approach is completely automatised. Our choreography synthesis
is based on the synthesis of the mpc that refines the composition by removing
rather than adding behaviour. The composition can be computed automatically,
starting from local components, to represent all their possible interactions inde-
pendently from the selected communication pattern (e.g., non-blocking output,

blocking output). The composition could also be the starting point, in this case
representing a global choreography to be realised, if possible. Our algorithm is
non-deterministic and accounts for necessary and permitted actions.

In [3], the synthesis of so-called coordination delegates is discussed. Coordi-
nation delegates are used to enforce the behaviour prescribed by a choreography
designed as a BPMN2 Choreography Diagram, and are additional components
that interact with each other and with the services identified by the choreogra-
phy to enforce the prescribed behaviour. A mature tool for software development
according to this proposal is presented in [4]. Similarly, in [38], BPMN2 Chore-
ography Diagrams are used to automatically derive a conformant choreography-
based software architecture. Informal diagrams are mapped to coloured Petri
nets, specifying the coordination logic. Coordination delegates are synthesised
to fulfill the inferred coordination logic that is needed to enforce the realisability
of the choreography. They communicate with the participants they are super-
vising or among themselves. These delegates are synthesised using the approach
described in [12] to either relax or restrict the original behaviour. This is obtained
by introducing extra communications performed by the delegates.

These approaches to the synthesis of coordination delegates are similar to
the synthesis of distributed controllers in [34], which studies the fundamental
problem of supervisory control synthesis for local controllers interacting among
them through a coordinator.

Compared to the above work, our approach to choreography synthesis does
not introduce any intermediate component, nor additional behaviour. This is not
the case for our orchestration synthesis that assumes the presence of an orches-
trator dictating the overall execution by interacting with local components. Since
contract automata are composable and our synthesised choreography is again a
contract automaton, we conjecture that similar results could be obtained by
(i) partitioning the composition, (ii) separately synthesising a choreography for
each partition, and (iii) computing the orchestration of the composition of the
choreographies. The conditions under which such partitions can be computed
to obtain non-empty choreographies need to be investigated, perhaps exploiting
existing research on requirements splitting for supervisory control synthesis [27].

A static analyser for Go programs that uses a global session graph synthesis
tool to detect communication deadlocks is discussed in [39]. From Go programs,
communicating finite state machines (CFSM for short) are extracted, and used to
synthesise a global choreography that represents deadlock-freeness in the orig-
inal program. Our synthesised choreography has also been interpreted in the
framework of CFSM [11], and the composition of contract automata enables to
proceed bottom-up by composing local components into a choreography. No-
tably, if such choreography cannot be realised by composing local components,
our algorithm automatically detects which portion of behaviour is to be pruned,
if possible, to synthesise a deadlock-free choreography. We conjecture that this
result could be used to suggest amendments to the original Go program.

The authors of this paper have gained experience in applying other tools for
controller synthesis, viz., CIF 3 [13] and UPPAAL STRATEGO [8]. It would be

interesting to investigate an encoding of the coordination syntheses discussed in
this paper in the tools discussed in this section, to draw a comparison.

Since our implementation is cleanly designed, efficient and implemented in
a widely used language in few lines of code, we hope that it will be exploited
in other tools as a further option to the synthesis problem for orchestration,
choreographies and most permissive controllers.

7 Conclusion

We have presented recent improvements in the contract automata tool. The
source code has been redesigned using MBSE techniques, and refactored in
Java 8 exploiting parallel streams, including the novel choreography synthesis.
The correspondence between the formal specification and the implementation is
discussed. The obtained improvements are emphasised by comparisons with the
previous tool version.

Future work. In the future, we would like to formally prove that the imple-
mentation respects its specification using, e.g., the theorem prover KeY [1] that
adopts specifications written in Java Modeling Language. While this is the state-
of-the-art for Java, there is no support for Java Streams and lambda expressions
to date, leaving this as a long-term goal. Also, the current version of our tool
supports product lines of orchestrations but not of choreographies, which we plan
to investigate, together with real-time support. Our approach refines a spurious
composition to a choreography, in the style of controller synthesis. As discussed
in Section 6, other approaches propose to add additional behaviour during syn-
thesis. A full-fledged comparison with other approaches is a matter of future
investigation. It is also interesting to exploit the compositionality offered by
contract automata to combine choreography and orchestration synthesis with
the goal of maximising the set of contracts that can correctly interact whilst
minimising the overhead of the orchestration.

Acknowledgments. We acknowledge funding from the MIUR PRIN 2017FTXR7S
project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification — The KeY Book: From Theory to Practice, LNCS,
vol. 10001. Springer (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Atampore, F., Dingel, J., Rudie, K.: Automated Service Composition Via Su-
pervisory Control Theory. In: Proceedings of the 13th International Work-
shop on Discrete Event Systems (WODES’16). pp. 28-35. IEEE (2016).
https://doi.org/10.1109/WODES.2016.7497822

3. Autili, M., Inverardi, P., Perucci, A., Tivoli, M.: Synthesis of Distributed
and Adaptable Coordinators to Enable Choreography Evolution. In: de Lemos,

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1109/WODES.2016.7497822

10.

11.

12.

13.

14.

15.
16.

17.

R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-
Adaptive Systems III: Assurances. LNCS, vol. 9640, pp. 282-306. Springer (2013).
https://doi.org/10.1007/978-3-319-74183-3_10

Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: CHOReVOLU-
TION: Service choreography in practice. Sci. Comput. Program. 197 (2020).
https://doi.org/10.1016/j.scico.2020.102498

Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in Behavioural Contracts: A
Brief Survey. In: Bodei, C., Ferrari, G., Priami, C. (eds.) Programming Languages
with Applications to Biology and Security. LNCS, vol. 9465, pp. 103-121. Springer
(2015). https://doi.org/10.1007/978-3-319-25527-9_9

Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L., Gnesi, S., Di
Giandomenico, F.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344
Basile, D., ter Beek, M.H., Gnesi, S.: Modelling and Analysis with Featured
Modal Contract Automata. In: Proceedings of the 22nd International Systems
and Software Product Line Conference (SPLC’18). vol. 2, pp. 11-16. ACM (2018).
https://doi.org/10.1145/3236405.3236408

Basile, D., ter Beek, M.H., Legay, A.: Strategy Synthesis for Autonomous Driv-
ing in a Moving Block Railway System with UPPAAL STRATEGO. In: Gotsman,
A., Sokolova, A. (eds.) FORTE. LNCS, vol. 12136, pp. 3-21. Springer (2020).
https://doi.org/10.1007,/978-3-030-50086-3_1

Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of Orchestrations and Chore-
ographies: Bridging the Gap between Supervisory Control and Coordination of Ser-
vices. Log. Methods Comput. Sci. 16(2) (2020). https://doi.org/10.23638/LMCS-
16(2:9)2020

Basile, D., Degano, P., Ferrari, G.L.: Automata for Specifying and Or-
chestrating Service Contracts. Log. Meth. Comp. Sci. 12(4:6), 1-51 (2016).
https://doi.org/10.2168/LMCS-12(4:6)2016

Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. J. Log. Algebr. Meth. Program. 85(3),
425-446 (2016). https://doi.org/10.1016/j.jlamp.2015.09.011

Basu, S., Bultan, T.: Automated Choreography Repair. In: Stevens, P.,
Wasowski, A. (eds.) FASE. LNCS, vol. 9633, pp. 13-30. Springer (2016).
https://doi.org/10.1007 /978-3-662-49665-7 2

ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory Controller Synthesis for
Product Lines Using CIF 3. In: ISoLA. LNCS, vol. 9952, pp. 856-873. Springer
(2016). https://doi.org/10.1007/978-3-319-47166-2_59

ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Web Service Composition Approaches:
From Industrial Standards to Formal Methods. In: Proceedings of the 2nd Inter-
national Conference on Internet and Web Applications and Services (ICIW’07).
IEEE (2007). https://doi.org/10.1109/ICTW.2007.71

Boswell, D., Foucher, T.: The Art of Readable Code. O'Reilly (2011)
Bouguettaya, A., Singh, M., Huhns, M., Sheng, Q.Z., Dong, H., Yu, Q., Neiat,
A.G., Mistry, S., Benatallah, B., Medjahed, B., Ouzzani, M., Casati, F., Liu,
X., Wang, H., Georgakopoulos, D., Chen, L., Nepal, S., Malik, Z., Erradi, A.,
Wang, Y., Blake, B., Dustdar, S., Leymann, F., Papazoglou, M.: A Service Com-
puting Manifesto: The Next 10 Years. Commun. ACM 60(4), 64-72 (2017).
https://doi.org/10.1145/2983528

Caillaud, B., Darondeau, P., Lavagno, L., Xie, X. (eds.): Synthesis and Control
of Discrete Event Systems. Springer (2002). https://doi.org/10.1007/978-1-4757-
6656-1

https://doi.org/10.1007/978-3-319-74183-3_10
https://doi.org/10.1016/j.scico.2020.102498
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1145/3236405.3236408
https://doi.org/10.1007/978-3-030-50086-3_1
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1016/j.jlamp.2015.09.011
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1109/ICIW.2007.71
https://doi.org/10.1145/2983528
https://doi.org/10.1007/978-1-4757-6656-1
https://doi.org/10.1007/978-1-4757-6656-1

18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

https://github.com/davidebasile/Contract AutomataLib
https://github.com/davidebasile/Contract AutomataApp

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM 51(1), 107-113 (2008).
https://doi.org/10.1145/1327452.1327492

Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing For-
mal Tools for System Design: a Judgment Study. In: Proceedings of the 42nd Inter-
national Conference on Software Engineering (ICSE’20). pp. 62-74. ACM (2020).
https://doi.org/10.1145/3377811.3380373
https://github.com/davidebasile/Contract AutomataLib/blob/old-backup/src/
FMCA /FMCA . java#L1200, lines 1200-1378 contain the orchestration synthesis,
lines 1385-1596 the choreography synthesis (the utility methods are not counted).
Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 Expert Survey on Formal
Methods. In: ter Beek, M., Nickovié¢, D. (eds.) FMICS. LNCS, vol. 12327, pp. 3-69.
Springer (2020). https://doi.org/10.1007/978-3-030-58298-2_1

Gleirscher, M., Marmsoler, D.: Formal Methods in Dependable Systems Engineer-
ing: A Survey of Professionals from Europe and North America. Empir. Softw.
Eng. 25(6), 4473-4546 (2020). https://doi.org/10.1007/s10664-020-09836-5
Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley (2006)

Goorden, M.A., Moormann, L., Reijnen, F.F.H., Verbakel, J.J., van Beek, D.A.,
Hofkamp, A.T., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink, W.J.,
Rooda, J.E., Etman, L.F.P.. The Road Ahead for Supervisor Synthesis. In:
Pang, J., Zhang, L. (eds.) SETTA. LNCS, vol. 12153, pp. 1-16. Springer (2020).
https://doi.org/10.1007/978-3-030-62822-2_1

Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink, W.J.,
Rooda, J.E.: The impact of requirement splitting on the efficiency of supervisory
control synthesis. In: Larsen, K.G., Willemse, T.A.C. (eds.) FMICS. LNCS, vol.
11687, pp. 76-92. Springer (2019). https://doi.org/10.1007/978-3-030-27008-7_5
Guanciale, R., Tuosto, E.: PomCho: A tool chain for choreographic design. Sci.
Comput. Program. 202 (2021). https://doi.org/10.1016/j.scico.2020.102535
Henderson, K., Salado, A.: Value and benefits of model-based systems engi-
neering (MBSE): Evidence from the literature. Syst. Eng. 24(1), 51-66 (2021).
https://doi.org/10.1002/sys.21566

Huisman, M., Gurov, D., Malkis, A.: Formal methods: From academia to industrial
practice. A travel guide. arXiv:2002.07279 [cs.SE] (February 2020), https://arxiv.
org/abs/2002.07279

Khatchadourian, R., Tang, Y., Bagherzadeh, M.: Safe automated refactoring for
intelligent parallelization of Java 8 streams. Sci. Comput. Program. 195 (2020).
https://doi.org/10.1016/j.scico.2020.102476

Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ahmed, S.: Safe Automated
Refactoring for Intelligent Parallelization of Java 8 Streams. In: Proceedings of
the 41st International Conference on Software Engineering (ICSE’19). pp. 619-
630. IEEE (2019). https://doi.org/10.1109/ICSE.2019.00072

Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ray, B.: An Empirical Study on
the Use and Misuse of Java 8 Streams. In: Wehrheim, H., Cabot, J. (eds.) FASE.
LNCS, vol. 12076, pp. 97-118. Springer (2020). https://doi.org/10.1007/978-3-030-
45234-6_5

Komenda, J., Masopust, T., van Schuppen, J.H.: Supervisory control synthesis of
discrete-event systems using a coordination scheme. Autom. 48(2), 247-254 (2012).
https://doi.org/10.1016/j.automatica.2011.07.008

https://github.com/davidebasile/ContractAutomataLib
https://github.com/davidebasile/ContractAutomataApp
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3377811.3380373
https://github.com/davidebasile/ContractAutomataLib/blob/old-backup/src/FMCA/FMCA.java#L1200
https://github.com/davidebasile/ContractAutomataLib/blob/old-backup/src/FMCA/FMCA.java#L1200
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1007/978-3-030-62822-2_1
https://doi.org/10.1007/978-3-030-27008-7_5
https://doi.org/10.1016/j.scico.2020.102535
https://doi.org/10.1002/sys.21566
https://arxiv.org/abs/2002.07279
https://arxiv.org/abs/2002.07279
https://doi.org/10.1016/j.scico.2020.102476
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1016/j.automatica.2011.07.008

35.

36.
37.
38.

39.

40.

41.

42.
43.

Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes — a comprehen-
sive study on real world concurrency bug characteristics. In: Proceedings of
the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’08). pp. 329-339. ACM (2008).
https://doi.org/10.1145/1346281.1346323

Martin, R.C.: Clean Code. Prentice Hall (2008)
https://jgraph.github.io/mxgraph/java/index.html

Najem, T.: A Formal Semantics For Supporting The Automated Synthesis Of
Choreography-based Architectures. In: Proceedings of the 13th European Con-
ference on Software Architecture (ECSA’19). vol. 2, pp. 51-54. ACM (2019).
https://doi.org/10.1145/3344948.3344949

Ng, N., Yoshida, N.: Static Deadlock Detection for Concurrent Go by
Global Session Graph Synthesis. In: Proceedings of the 25th International
Conference on Compiler Construction (CC’16). pp. 174-184. ACM (2016).
https://doi.org/10.1145/2892208.2892232

Peltz, C.: Web Services Orchestration and Choreography. IEEE Comp. 36(10),
46-52 (2003). https://doi.org/10.1109/MC.2003.1236471

Ramadge, P.J., Wonham, W.M.: Supervisory Control of a Class of Dis-
crete Event Processes. SIAM J. Control Optim. 25(1), 206-230 (1987).
https://doi.org/10.1137,/0325013

Tockey, S.: How to Engineer Software: A Model-Based Approach. Wiley (2019)
Warburton, R.: Java 8 Lambdas: Pragmatic Functional Programming. O’Reilly
(2014)

https://doi.org/10.1145/1346281.1346323
https://jgraph.github.io/mxgraph/java/index.html
https://doi.org/10.1145/3344948.3344949
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1137/0325013

	A Clean and Efficient Implementation of Choreography Synthesis for Behavioural Contracts

