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Abstract. We seek to optimize the production planning of a three-
echelon remanufacturing system under uncertain input data. We consider
a multi-stage stochastic integer programming approach and use scenario
trees to represent the uncertain information structure. We introduce a
new dynamic programming formulation that relies on a partial nested
decomposition of the scenario tree. We then propose a new extension of
the recently published stochastic dual dynamic integer programming al-
gorithm based on this partial decomposition. Our numerical results show
that the proposed solution approach is able to provide near-optimal so-
lutions for large-size instances with a reasonable computational effort.

Keywords: Stochastic lot-sizing with remanufacturing · Multistage stochas-
tic integer programming · Stochastic dual dynamic programming.

1 INTRODUCTION

Remanufacturing is defined as a set of processes transforming used products into
like-new finished products, mainly by rehabilitating damaged components. By
reusing the materials and components embedded in used products, remanufac-
turing both contributes in reducing pollution emissions and natural resource con-
sumption, making production processes more environment-friendly. However, re-
manufacturing systems involve several complicating characteristics, among which
a high level of uncertainty in the input data needed to make planning decisions.
This uncertainty mainly comes from a lack of control on the return flows of
used products, both in terms of quantity and quality, and from the difficulty of
forecasting the demand for remanufactured products.

The present work investigates production planning for a remanufacturing sys-
tem involving three production echelons: disassembly of used products into parts,
refurbishing of used parts and reassembly into like-new products. We consider
uncertainties related to the quantity and quality of used products returned by
customers, the demand for remanufactured products, and the production costs.
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We propose to handle this problem through a multi-stage stochastic program-
ming approach in which production decisions are not made once and for all but
rather adjusted over time according to the actual realizations of the uncertain
parameters. We assume that the underlying stochastic input process has a fi-
nite probability space and we represent the information on the evolution of the
uncertain parameters by a discrete scenario tree.

This problem was previously investigated in [2] and [3]. Quezada et al. [3]
formulated the problem as a large-size mixed-integer linear program and pro-
posed a customized branch-and-cut algorithm based on new valid inequalities to
solve it. Quezada et al. [2] later investigated the use of the Stochastic Dual Dy-
namic integer Programming (SDDiP) algorithm recently presented in [4] to solve
the problem. This algorithm relies on a full decomposition of the problem into
a large number of small deterministic sub-problems. Although the above men-
tioned solution approaches were successful at providing near optimal solutions
for small to medium size instances, some numerical difficulties were encountered
to solve instances involving large-size scenario trees.

The present work thus discusses a new solution approach for this problem
which uses a partial nested decomposition. The main idea consists in partially
decomposing the problem into a set of medium-size stochastic sub-problems,
each one defined on a sub-tree of the initial scenario tree. A new extension of
the SDDiP algorithm exploiting this partial decomposition is then proposed.

The remaining part of this paper is organized as follows. Section 2 describes
the problem under study and introduces a mixed-integer linear programming
formulation. Section 3 briefly presents the proposed partial nested decomposition
approach. Computational results are reported in Section 4. Finally, conclusions
and directions for further works are discussed in Section 5.

2 Problem description and modeling

Production system We consider a remanufacturing system comprising three
main production echelons: disassembly, refurbishing and reassembly. We seek to
plan the production activities in this system over a horizon comprising a discrete
set T = {1, .., T} of periods. The system involves a set I of items. Among these
ones, item i = 0 represents the used products returned by customers in limited
quantity at each period. A used product is composed of I parts. Let αi be the
number of parts i embedded in a used product. The returned products are first
disassembled to obtain a set Ir = {1, ..., I} of recoverable parts. Due to the
usage state of the used products, some of the parts obtained during disassembly
have to be discarded. In order to reflect the variations in the quality of the used
products, the yield of the disassembly process, i.e. the proportion of parts which
will be recoverable, is assumed to be part-dependent and time-dependent. The
recoverable parts are then refurbished on dedicated refurbishing processes. The
set of Is = {I + 1, ..., 2I} of serviceable parts obtained after refurbishing are
reassembled into remanufactured products which have the same bill-of-material
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as the used products. These remanufactured products, indexed by i = 2I + 1,
are used to satisfy the dynamic demand of customers.

The system comprises a set P = {0, ..., P +1} of production processes. Here,
p = 0 corresponds to the disassembly process, p ∈ {1, ..., P} corresponds to the
process refurbishing the recoverable part indexed by i = p into the serviceable
part indexed by i + I and p = P + 1 corresponds to the reassembly process.
Note that the system comprises one individual refurbishing process for each item
embedded in the used product and, hence, we have P = I. All these processes
are assumed to be uncapacitated. However, the system might not be able to
satisfy the customer demand on time due to part shortages if there are not
enough used products returned by customers or if their quality is low. In this
situation, the corresponding demand is lost incurring a high penalty cost to
account for the loss of customer goodwill. Moreover, some used products and
recoverable parts are allowed to be discarded. This option might be useful in
case more used products are returned that what is needed to satisfy the demand
for remanufactured products and in case there is a strong unbalance between
the part-dependent disassembly yields leading an unnecessary accumulation in
inventory of the easy-to-recover parts.
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Fig. 1. Illustration of studied remanufacturing system

Uncertainty We focus on the situation in which the input data needed to opti-
mize the production plan for this system are subject to uncertainty and propose
to handle this stochastic problem using a multi-stage stochastic integer program-
ming approach. We assume that the evolution of the uncertain parameters can
be represented by a discrete scenario tree V comprising a set S = {1, . . . , Σ} of
decision stages. A decision stage σ may correspond to one or several planning
periods: let T σ be the set of time periods belonging to stage σ. Each node n ∈ V
corresponds to a single period tn and a single stage σn. Let Vt be the set of nodes
belonging to period t. Each node n has a unique predecessor node denoted an
and represents the state of the system that can be distinguished by the infor-
mation unfolded up to stage σn. At any non-terminal node of the tree, there
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are one or several branches to indicate future possible outcomes of the random
variables from the current node. Let C(n) be the set of children of node n. The
probability associated with the state represented by the node n is denoted by
ρn. A scenario is defined as a path in the tree from the root node to a leaf node
and represents a possible outcome of the stochastic input parameters over the
whole planning horizon.

Each node n ∈ V corresponds to a realization of the stochastic input param-
eters. Let rn be the quantity of collected used products, dn be the customers
demand and πni be the proportion of recoverable parts i ∈ Ir obtained by dis-
assembling one unit of returned product at node n ∈ V. As for the costs, we
have the setup cost fnp for process p ∈ P, the unit inventory cost hni for part
i ∈ I, the unit lost-sales penalty cost ln, the unit cost qni for discarding item
i ∈ Ir ∪{0} and the unit cost gn for discarding the unrecoverable parts obtained
while disassembling one unit of returned product at node n ∈ V.

Mixed-integer linear programming formulation In order to build a math-
ematical model for the problem, we introduce the following decision variables at
each node n ∈ V: xnp the quantity of parts processed on process p ∈ P, ynp ∈ {0, 1}
the setup variable for process p ∈ P, sni the inventory level of part i ∈ I, wni the
quantity of part i ∈ Ir ∪ {0} discarded and `n the lost sales of remanufactured
products. This leads to the following MILP model.

min
∑
n∈V

ρnFn(xn, yn, sn, wn, ln) (1)

xnp ≤Mn
p y

n
p ∀p ∈ P,∀n ∈ V (2)

sn0 = sa
n

0 + rn − xn0 − wn0 ∀n ∈ V (3)

sni = sa
n

i + πni αix
n
0 − xni − wni ∀i ∈ Ir,∀n ∈ V (4)

sni = sa
n

i + xni−P − αixnP+1 ∀i ∈ Is,∀n ∈ V (5)

sn2I+1 = sa
n

2I+1 + xnP+1 − dn + `n ∀n ∈ V (6)

sa
1

i = 0 ∀i ∈ I,∀n ∈ V (7)
`n, sni ≥ 0 ∀i ∈ I,∀n ∈ V (8)
xnp ≥ 0, ynp ∈ {0, 1} ∀p ∈ P,∀n ∈ V (9)

The objective function (1) aims at minimizing the expected total cost, over all
nodes of the scenario tree. The total cost at node n, Fn(xn, yn, sn, wn, ln) =∑
p∈P f

n
p y

n
p +

∑
i∈I h

n
i s
n
i + ln`n +

∑
i∈Ir∪{0} q

n
i w

n
i + gnxn0 , is the sum of the

setup, inventory holding, lost sales and disposal costs. Constraints (2) link the
production quantity variables to the setup variables. Constraints (3)-(6) are the
inventory balance constraints. Without loss of generality, we assume that the
initial inventories are all set to 0, i.e., sa

1

i = 0 for each i ∈ I. Finally, Con-
straints (8)-(9) provide the domain of the decision variables.

In what follows, we denote by Xn the subset of constraints (2)-(9) related to
node n.
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3 Partial nested decomposition approach

In order to solve large-size instances of Problem (1)-(9), we propose a new solu-
tion approach based on a partial nested decomposition of the original stochastic
problem into a series of smaller stochastic sub-problems.

Partial decomposition The proposed approach relies on a partial decomposi-
tion of the scenario tree V into a series of smaller sub-trees. This decomposition
is obtained by first partitioning the set of decision stages S = {1, . . . , Σ} into a
series of macro-stages G = {1, . . . , Γ}, where each macro-stage γ ∈ G contains
a number of consecutive stages denoted by S(γ). We let t(γ) (resp. t′(γ)) rep-
resent the first (resp. the last) time period belonging to macro-stage γ. For a
given macro-stage γ, each node η belonging to the first time period in γ, i.e.
each node η ∈ Vt(γ), is the root node of a sub-tree defined by the set of nodes
Wη = ∪t=t(γ),...,t′(γ)Vt ∩V(η). Here, V(η) denotes the sub-tree of V rooted in η,
Wη is thus the restriction of V(η) to the nodes belonging to macro-stage γ. Let
L(η) = Wη ∩ Vt′(γ) be the set of leaf nodes of sub-tree Wη. Finally, we denote
by f = ∪γ∈GVt(γ) the set of sub-tree root nodes induced by G.

We then define the following sub-problem, denoted Pη(sa
η

), for each sub-
treeWη, η ∈ f. Pη(sa

η

) focuses on optimizing the production plan for the nodes
belonging to sub-tree Wη given the entering stock level of each part i ∈ I, saηi ,
imposed by the parent node aη.

Qη(sa
η

) = min
∑
n∈Wη

ρnFn(xn, yn, sn, wn, ln) +
∑
`∈L(η)

∑
m∈C(`)

Qm(s`) (10)

(xn, yn, sn, wn, ln) ∈ Xn ∀n ∈ Wη (11)

The objective value Qη(sa
η

) denotes the optimal value of Pη(sa
η

) as a func-
tion of the entering stock level sa

η

. It comprises two terms. The first term is
related to the total expected production cost over all nodes n ∈ Wη. The sec-
ond term called the expected cost-to-go function represents the expected future
costs, i.e. the costs which will have to be paid at the forthcoming decision stages,
incurred by the production decisions made within sub-tree Wη.

The expected cost-to-go function at leaf node ` ∈ L(η) is defined as the ex-
pected value of Qm(·) over all the children m of leaf node ` in the initial scenario
tree V, i.e. over all m ∈ C(`). This gives Q`(·) =

∑
m∈C(`)Q

m(·). The expected
future costs of the decisions made in Wη are thus computed as the sum, over all
nodes ` ∈ L(η), of Q`(s`). Note that for all nodes belonging to the last period
of the planning horizon, i.e. for all ` ∈ VT , Q`(·) ≡ 0.

Extended Stochastic Dual integer Programming algorithm The reformu-
lation of Problem (1)-(9) using the dynamic programming recursion described
by Equations (10)-(11) enables to develop a solution approach based on the
Stochastic Dual integer Programming (SDDiP) algorithm recently presented
by [4]. Basically, this algorithm will solve Problem (1)-(9) by solving a sequence
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of sub-problems (10)-(11) in which each expected cost-to-go function Q`(·) is
iteratively approximated by a piece-wise linear function.

Note that a key assumption for developing such algorithm is that the scenario
tree satisfies the stage-wise independence property. When there are several time
periods per decision stage, this property can be defined as follows. For any two
nodes m and m′ belonging to stage σ − 1 and such that tm = tm

′
= max{t, t ∈

T σ−1}, the set of nodes ∪t∈T σVt ∩ V(m) and ∪t∈T σVt ∩ V(m′) are defined by
identical data and conditional probabilities. This property enables us to signifi-
cantly reduce the number of expected cost-to-go functions for which a piece-wise
linear approximation must be build. Namely, in this case, the stochastic process
can be represented at macro-stage γ by a set Rγ = {1, . . . , Rγ} of independent
realizations. Each realization X γ,ζ corresponds to a subtree describing one of the
possible evolutions of the uncertain parameters over periods t(γ), . . . , t′(γ). Let
L(γ, ζ) denote the set of its leaf nodes. The expected cost-to-go functions thus
depend on the macro-stage rather than on the node, i.e. we have Qm(·) ≡ Qγ(·),
for all m ∈ Vt′(γ), so that only one expected cost-to-go function has to be
approximated per macro-stage. Moreover, we can define a single sub-problem
Pγ per macro-stage and each sub-problem Pη, η ∈ f, will be described as
Pγη (sa

η

,X γη,ζ) where X γη,ζ is the realization corresponding to Wη.
Each iteration υ of the extended SDDiP algorithm comprises a sampling

step, a forward step and a backward step. In the sampling step, a subset of W
scenarios is sampled from the scenario tree. Let Ωυ = {ω1

υ, . . . , ω
w
υ , . . . , ω

W
υ } be

the set of sampled scenarios, ωwυ be the set of nodes belonging to scenario w at
iteration υ.

In the forward step, the algorithm proceeds stage-wise from macro-stage
γ = 1 to Γ by solving, for each sampled scenario ωw and each macro-stage
γ, the problem P̂γ(sm,X γ,ζw,γ ), which uses an approximate expected cost-to-
go function, where m = ωw ∩ Vt′(γ−1) is the node in the sampled scenario ωw
belonging to the last period of γ. At the end of this step, a statistical upper-
bound of the problem is computed as the weighted average over all sampled
scenarios.

In the backward step, the algorithm proceeds stage-wise from macro-stage
γ = G to macro-stage 1. Thus, for each scenario w = 1, . . . ,W , each node
m ∈ ωwv ∩Vt

′(γ) and each realization ζ ∈ Rγ+1, it solves a suitable relaxation of
Problem P̂γ+1(sm,X γ+1,ζ). This relaxation is then used to improve the repre-
sentation of the approximate cost-to-go function Qγ(·) through the generation
of a new cut. Finally, the sub-problem solved at macro-stage γ = 1 provides a
lower bound for the overall problem. The algorithm stops when the upper and
lower bounds are close enough, according to a convergence criteria.

As a synthesis, the main steps of the proposed extended SDDiP algorithm
are summarized in Algorithm 1.

Original vs extended SDDiP algorithm The reader is referred to [4] for a
detailed description of the original version of SDDiP algorithm. The proposed
extended version differs from the original one with respect to two key features.
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Algorithm 1: Extended SDDiP algorithm
1 Initialize LB ← −∞, UB ← +∞, υ ← 1
2 while no stopping criterion is satisfied do
3 Sampling step
4 Randomly select W scenarios Ωυ = {ω1

υ, ..., ω
W
υ }

5 Forward step
6 for w = 1, ...,W do
7 for γ = 1, ..., Γ do
8 Solve P̂γ(sm,X γ,ζ) for m = ωwυ ∩ Vt

′(γ−1)

9 Record S`υ for ` = ωwυ ∩ L(γ, ζw,γυ )

10 end
11 υw ←

∑
n∈ωwυ

Fn(xn, yn, sn, wn, ln)

12 end
13 µ̂←

∑W
w=1 υ

w and σ̂2 ← 1
W−1

∑W
w=1(υ

w − µ̂)2

14 UB ← µ̂+ zα/2
σ̂√
W

15 Backward step
16 for γ = Γ − 1, ..., 1 do
17 for w = 1, ...,W do
18 Let m = ωwυ ∩ Vt

′(γ)

19 for ζ ∈ Rγ+1 do
20 Solve the linear relaxation of P̂γ(sm,X γ,ζ) and collect the

coefficients of the strengthened Benders’ cut
21 Solve the Lagrangian relaxation of P̂γ(sm,X γ,ζ) and collect

the constant value of the strengthened Benders’ cut
22 end
23 end
24 Add the generated cut to the current approximation of Qγ+1

25 end
26 LB ← Q̂1

υ+1(0)
27 v ← v + 1

28 end

First, the original version of the SDDiP algorithm uses a full decomposition
of the stochastic problem into small deterministic sub-problems, i.e. a decom-
position in which each macro-stage γ corresponds to a single decision stage σ,
whereas we propose to use a partial decomposition. Using a partial nested decom-
position instead of a full one may positively impact the computational efficiency
of the SDDiP algorithm. Namely, it reduces the number of expected cost-to-go
functions for which a piece-wise linear approximation must be built. Further-
more, each solved sub-problem covers a larger portion of the planning horizon
so that the solution obtained at a given iteration of the algorithm will tend to
be less myopic and thus of better quality. All this may contribute in accelerating
the global convergence of the algorithm. Yet, the sub-problems to be solved at
each iteration will be MILPs of larger size. The computational effort needed to
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solve them will thus also be larger. It is however possible to decrease it to some
extent by using polyhedral approaches such as the one presented in [3].

Second, Zou et al. [4] showed that the finite convergence of the SDDiP al-
gorithm is guaranteed when the state variables, i.e. the variables linking the
decision stages to one another, are restricted to be binary. In Problem (1)-(9),
the state variables are the continuous inventory level variables sn. In this case,
Zou et al. [4] suggest to use a binary approximation of the continous state vari-
ables, which requires the introduction of a large number of additional binary
variables in the problem formulation. In the proposed extended version of this
algorithm, as done e.g. by Hjelmeland et al. [1] and Quezada et al. [2], we keep
continuous state variables. In this case, the finite convergence of the algorithm
is not theoretically guaranteed but, as this approximation leads to a significant
reduction of the computational effort required at each iteration of the algorithm,
it may positively impact the solution quality in practice.

4 Computational results

In this section, we focus on assessing the performance of the proposed extended
SDDiP algorithm by comparing it with the one of a stand-alone mathematical
programming solver using formulation (1)-(9) and the one of the original SDDiP
algorithm proposed by Zou et al. [4].

We randomly generated instances following the same procedure as the one
used in [3]. We used various scenario tree structures and various values for the re-
turn over demand ratio r/d. Regarding the scenario tree structure, we used only
balanced trees with Σ ∈ {4, 6, 8, 12} stages, a constant number b ∈ {1, 2, 3, 5} of
time periods per stage and a constant number R ∈ {3, 5, 10, 20} of equi-probable
realizations per stage. We considered 8 possible combinations for these parame-
ters, leading to instances involving between 1000 and 3.2 millions scenarios.

The partial decomposition of the problem was obtained by using a partition
of the set of decision stages S in which each macro-stage corresponds to a con-
stant number G ∈ {1, 2} of stages. As for the stopping criteria, the algorithm
stops when the lower bound does not improve after 30 iterations, or when 1000
iterations have been carried out. All the algorithms were implemented in C++
using the Concert Technology environment. The MILP and LP sub-problems
embedded into the SDDiP algorithm were solved using CPLEX 12.8. All com-
putations have been carried out on the computing infrastructure of the Labo-
ratoire d’Informatique de Paris VI (LIP6), which consists of a cluster of Intel
Xeon Processors X5690. We set the cluster to use two 3.46GHz cores and 24GB
RAM to solve each instance. We imposed a time limit of 1800 seconds.

Table 1 displays the numerical results. Each line corresponds to a given com-
bination of Σ,R, b, and r/d and provides the average results for the related 20
instances. For each combination, Table 1 displays the gap between the lower
bound and the upper bound (|UB −LB|/UB) found before some stopping crite-
rion is reached and the average computation time. The label “ ∗ ” represents the



Remanufacturing planning under uncertainty 9

case when CPLEX in default mode could not report any gap within the imposed
time limit.

Results from Table 1 show that the proposed extended SDDiP algorithm
provides solutions of a significantly improved quality within the alloted compu-
tation time. Namely, the average gap over all tested instances is decreased from
54.50% (resp. 37.21%) when directly solving Problem (1)-(9) with CPLEX solver
(resp. when solving it with the original SDDiP algorithm) to 4.98% when using
the proposed extended version with G = 2 stages per macro-stage.

We note that a large part of this improvement can be explained by the use of
continuous (rather than binary) state variables. This can be seen by comparing
the average gap obtained with the original SDDiP algorithm, 37.21%, with the
one obtained when using the proposed extension with G = 1, i.e. with a full
decomposition of the problem, 6.85%. The use of a partial decomposition based
on G = 2 stages per macro-stage then further improves the solution quality by
decreasing the average gap from 6.85% to 4.98%.

Table 1. Numerical results

Instance CPLEX SDDiP Extended SDDiP Extended SDDiP
G = 1 G = 2

r/d Σ b R Gap Time Gap Time Gap Time Gap Time
1 4 1 10 0.25 1,800.56 11.63 1,418.64 3.45 754.98 0.97 599.16

20 6.57 1,801.32 11.75 1,367.78 4.16 1,041.48 3.33 1,009.13
6 1 10 76.89 1,818.76 13.97 1,803.22 3.76 1,246.89 3.02 1,498.62

20 * * 16.26 1,804.41 4.22 1,300.51 3.78 1,826.17
8 2 5 92.02 1,837.44 24.70 1,814.66 2.77 1,547.97 2.23 1,791.41

5 5 * * 17.58 1,840.89 2.37 1,683.59 2.70 1,832.97
12 1 3 86.29 1,865.56 27.24 1,809.93 3.09 1,546.61 2.46 1,723.32

3 3 * * 34.49 1,829.69 2.49 1,785.61 1.87 1,726.96
Average 52.40 1,824.73 19.70 1,711.15 3.29 1,363.46 2.54 1,500.97
3 4 1 10 0.31 1,000.40 33.81 1,274.02 7.83 762.06 1.54 826.66

20 7.96 1,801.40 28.91 1,276.01 6.64 1,039.12 3.84 942.09
6 1 10 81.22 1818.23 44.30 1,804.47 8.87 1,202.04 5.94 1,135.28

20 * * 53.67 1,796.29 14.27 1,206.11 11.84 1,269.60
8 2 5 96.13 1,837.22 68.13 1,818.03 10.17 1,525.91 6.71 1,682.07

5 5 * * 65.15 1,830.02 11.79 1,800.69 12.60 1,824.09
12 1 3 95.09 1,869.61 70.48 1,805.16 11.96 1,650.80 8.19 1,683.99

3 3 * * 73.23 1,848.63 13.32 1,801.59 8.68 1805.90
Average 56.63 1,825.60 54.94 1,683.37 10.61 1,373.54 7.42 1,393.46

5 Conclusion and perspectives

We studied production planning for a remanufacturing system under uncertain
input data and investigated a multi-stage stochastic integer programming ap-
proach. We proposed to use a new extension of the SDDiP algorithm recently
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introduced by Zou et al. [4] to solve the problem. Computational experiments
carried out on large-size randomly generated instances suggested that the pro-
posed extended algorithm significantly outperforms both the original SDDiP al-
gorithm and the mathematical programming solver CPLEX using an extensive
MILP formulation.

Note that, in the proposed extended SDDiP algorithm, we generate strength-
ened Benders’ cuts to under approximate the expected cost-to-go functions.
These cuts are linear inequalities for which part of the coefficients are obtained
by solving the linear relaxation of the corresponding sub-problems and by record-
ing the dual values of the constraints linking the sub-problems to one another.
Nonetheless, by noticing that these dual values vary according to the linear relax-
ation formulation used for each sub-problem, it is possible to generate different
strengthened Benders’ cuts by using different formulations. Thus, an interesting
research direction will be to exploit the current knowledge about the polyhedral
structure of the sub-problem to iteratively strengthen the linear relaxation for-
mulation of these sub-problems. For example, valid inequalities introduced in [3]
can be used to strengthen the linear relaxation of each sub-problem in order to
generate additional strengthened Benders’ cuts, which might positively impact
the performance of the algorithm.

Finally, note that we assumed in our problem modeling uncapacitated pro-
duction processes. Extending the present work in order to account for production
resources with limited capacity could thus be an interesting direction for further
research.
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