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Abstract. Mental disorders are more and more seen as based on complex net-

works of symptoms and predispositions that create the disorder as an emergent 

behaviour of the network's dynamics. This paper aims to provide a computational 

model reflecting the adaptive causal relations between anxiety, stress and physi-

cal exercise based on a network-oriented modelling approach. The model was 

evaluated by executing several simulations and validated through an examination 

of its emergent properties and their cross-reference to the available literature. The 

created model offers the possibility of simulating different treatments, and offers 

a basis to develop a virtual patient model.  

Keywords: Anxiety, Stress, Physical Exercise, Adaptive Network, temporal-

causal  

1 Introduction  

Everyone likely experiences stress and anxiety from time to time in their life. While the 

majority will only experience mild non-clinical symptoms, one should still be cautious. 

Although mild symptoms might not impact one's life substantially, mild symptoms can 

still have adverse effects on the affected individuals [14]. Furthermore, leaving mild 

symptoms untreated increases the individual's risk of their anxiety progressing to a clin-

ical state [14]. It is estimated that the prevalence of anxiety symptoms in the general 

population is around 32% [17], and around 25% of the American population had at least 

one episode of anxiety [25]. Also, urgency arises from the current stressful situation 

created through the COVID-19 pandemic and its related effects, as the prevalence of 

anxiety and related psychological disorders seem to increase [17]. Therefore, to reduce 

the risk of onsetting severe anxiety, a range of treatment approaches should always be 

considered. One of such approaches could be physical activity. Not only does this bring 

general health benefits with it, but it is also something easy and accessible to reduce 

one's symptoms without extra medication [9, 14, 25].  

In the classical psychopathological model, it is assumed that the disorder causes the 

combination of symptoms to appear, as it requires both a categorical and dimensional 
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latent classification for symptoms of psychological disorders and does not take causal 

relations between the symptoms into account. Lately, however, a network-oriented ap-

proach towards psychological disorders was proposed. This approach offers another 

view, stating that a mental disorder is not the reason for its underlying symptoms to co-

appear, but a mental disorder is based on a network of distinct symptoms, dynamically 

interacting with each other ultimately causing the emergent behaviour classified as, 

e.g., Anxiety [4, 6, 10, 15]. In this effort, given the complexity of the underlying neu-

robiological mechanisms [25] and the necessity of further research in the domain, an 

integrated approach showing changes in anxiety in response to physical activity is of 

great value enabling to simulate the effects of different exercise frequencies.   

2 Literature Overview  

Many meta-studies have observed a significant but modest anxiety-reducing effect of 

physical exercise [13-14, 25] and an overall increase in one's mood [25]. However, 

there still is a debate if clinical or non-clinical populations benefit more from the effects 

of physical exercising [14, 25]. Physical exercise however should still be promoted 

given its preventative and rehabilitative qualities, through direct and indirect effects 

[13-14, 25], concerning brain-related psychiatric disorders. Although exercise always 

has a positive effect on one's emotions [8], its anxiety-reducing effects depend on the 

intensity of the exercise. Research has shown that the anxiolytic effect of exercise is 

highest when it is performed under the ventilatory threshold, the threshold at which the 

breathing rate increases disproportionally regarding the oxygen uptake. Training above 

this threshold reduces the mood-increasing effects of the exercising [8]. The literature 

here suggests that aerobic training of around 20 to 35 minutes is most beneficial [8, 13, 

25], with first positive effects on an individual's mood already showing after 15 to 20 

minutes [8]. Therefore, a timescale of 30 minutes is considered to induce exercises' 

anxiolytic effect, considering the above-mentioned factors.  

Research additionally has shown that physical exercise leads to a positive effect on 

an individual's stress response [9, 25]. Due to a positive correlation between anxiety 

and stress [11-12], this also effects one's anxiousness. This correlation already begins 

to show with only mild stress symptoms [11]. Further studies have also shown a reduc-

tion of the activation of the general stress response in physically active individuals [9]. 

A reduction in amplitude of the stress response and the time needed to recover to base-

line levels, could also be observed in physically active individuals [25]. This is im-

portant given a stress response is mostly defined by the individuals' ability to quickly 

recover to the baseline following a stressful event [3]. Furthermore, the interconnection 

of stress and anxiety urges one to also address indirect effects on anxiety.   

In a typical stress response, when a stressor is apparent, the threat recognising brain 

regions (amygdala, prefrontal cortex, and hippocampus) will initiate the release of Cor-

ticotrophin-releasing factors (CRFs). This release triggers the production of glucocor-

ticoid in the HPA Axis leading to the release of cortisol and the production of epineph-

rine. Usually this is described as the "Fight or Flight response" of the body [20]. The 

ways in which exercise influences this stress response are multifold [9], and seem to be 
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of both psychological and neurophysical nature [14]. Part of the neurophysical changes 

can be united under their effects on the biological stress response. One of these effects 

can be seen in a reduction of anxiety through effects on the hypothalamic-pituitary ad-

renal axis (HPA axis) [25] Another can be observed in an increase of the threshold that 

needs to be surpassed by stressful events to induce biological stress response, due to a 

reduction in the likelihood of the sympathetic nervous system's activation [9]. This is 

mostly based on changing baseline cortisol levels [13, 25] and a reduction of the level 

of cortisol in an active stress response [13]. Other long-term changes of the HPA Axis 

through exercise also include inhibition of cortisol synthesis and a higher functioning 

of mineralocorticoid receptors [13]. This suggests an decreased sensitivity of the HPA 

axis due to an increased activation threshold following physical exercise.  

Other effects of neurological nature indirectly influence the psychological responses 

and emotion regulation abilities [19]. Physical exercise does not only increase blood 

flow and the oxygenation and metabolism of the brain, it also induces the release of 

opioids and endocannabinoids, which were shown to have a direct anxiolytic effect 

[13]. Furthermore, it induces the release of neurotrophic factors [13, 25] and the syn-

thesis of several neurotransmitters (BDNF, IGF-1, WEGF, NT3, FGF-2, GDNF, EGF 

and NGF) [13]. The release of these neurotransmitters and neurotrophic factors has 

several effects. First the neurotransmitter release contributes to a less suppressed corti-

cal activity [13]. Second, neurogenesis-reducing effects of stress and neurodegenerative 

diseases are counteracted by an increased neurogenesis, attributable to a higher neuro-

trophin availability. Third, the ability to adapt to stress is increased due to an increased 

neuroplasticity induced by the neurotrophic factors [13]. The improved neuroplasticity 

also strengthens the adaptivity of the ventromedial prefrontal cortex, a brain region sig-

nificantly involved in the emotional and behavioural control network [19]. Further-

more, the release of brain-derived neurotrophic factors (BDNF) due to exercise also 

leads to a better responsivity to environmental stress, given BDNF's enhancing effect 

on the synaptic connectivity and signal transduction [21]. Therefore, this research indi-

cates that one's emotion regulation ability is indirectly influenced by exercise induced 

release of neurotransmitters and neurotrophic factors.  

Drawing on the above-mentioned correlations and underlying mechanisms, this pa-

per aims to contribute to the research effort by providing a computational model. Sur-

prisingly, until today the above-mentioned factors have not yet been incorporated into 

an computational model, despite the growing interest in an network-oriented approach 

of modelling neurophysical diseases [4, 6, 10, 15]. While the created model should offer 

the possibility of simulating different treatment procedures, it could later also be used 

as a possible basis or extension of a virtual agent model representing and simulating a 

patient.  
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3 The Adaptive Computational Network Model 

3.1 The modelling approach used 

The adaptive computational network model introduced here was developed using the 

adaptive network-oriented modeling approach described in Treur [23-24], which is 

based on self-modeling network models and a dedicated software environment. The 

adaptive computational network model's dynamics can be defined by a number of net-

work characteristics: its connections and their weights, its timing via speed factors, and 

the aggregation characteristics as follows.  

 

Connections  

The connections between nodes in this type of network represent a translation of real-

world causal relations into a network structure. They are defined by the nodes X and Y 

they connect and by their weight X,Y demonstrating the strength of that connection. In 

adaptive networks, this weight is represented by another (self-model) node (see below).  

 

Timing  

The model's timing is determined by the speed factors Y of each node Y, which can be 

understood as indication of the node's rate of change.  

 

Aggregation 

The type of aggregation chosen determines how multiple incoming inputs are combined 

into one effect on the destination node. For this, various combination functions ϲY(..) 

are provided by a dedicated library.  

 

Standard difference equation  

All network nodes Y (also called states) have time-dependent values Y(t) where t indi-

cates time. Based on the network characteristics for connectivity, aggregation and tim-

ing defined above, the following difference equation defines the network’s dynamics 

for any state Y: 

 

Y(t+Δt) = Y(t) + ηY[cY(ωX1,YX1(t), …, ωXk,YXk(t)) -Y(t)]Δt       (1) 
 

Here, X1, …, Xk are the network states from which Y has incoming connections. 

 

Higher-order self-models 

Self-models can represent adaptive characteristics of the network. These usually consist 

of self-model states, also called reification states [24]. Typically, the weight X,Y of a 

connection or a node's speed factor Y can be made adaptive through including a self-

model state named WX,Y (for connection weight) or HY (for speed factor) for it. How-

ever, self-model states can also represent other network characteristics like the param-

eters of combination functions.  
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Combination functions 

The dedicated software environment comes with a pre-selection of many (more than 

45) commonly used combination functions with differing parameters and use cases. A 

selection of combination functions used in the introduced model is given here.  

 The identity combination function id(..) is mostly used to directly transfer the acti-

vation of the source node to the receiving node or in a circular manner of a node to 

itself to model persistence of activation by keeping the already reached numerical 

value. It has no parameters, and its formal definition is as follows: 

  

  id(V) = V                      (2)  

 

The Hebbian learning combination function 𝐡𝐞𝐛𝐛(..) is used to model the Hebbian 

learning principle. It has one parameter , which describes the persistence factor. Its 

formal definition is as follows:  

 

  𝐡𝐞𝐛𝐛 (V1, V2, W) = V1V2 (1-W) +  W           (3)  

 

The advanced logistic sum combination function
 
alogistic,(V1, …, Vk) is an often-

used function to combine inputs when a node has multiple incoming connections. It has 

two parameters , which describes the steepness of the logistic function, and , which 

describes the threshold. Its formal definition is as follows:  

 

  alogistic,(V1, …, Vk) = [
1

1+e−𝛔(𝑉1+⋯+𝑉𝑘−𝛕)
−  

1

1+e𝛔𝛕](1+e-στ)    (4)  

 

Additionally, two custom step mod functions will be used to create cyclically recur-

ring inputs; see the Appendix [2].  

 

Software environment used 

Designed network models are usually specified in a standard table format, called the 

role matrices format, for which examples and explanations can be found in [24], Ch. 9. 

Given these specifications and each state's initial values, the simulation can be per-

formed using the provided dedicated software environment, implemented in the form 

of MatLab scripts and functions; for more details, see [24], Ch. 9. The script for simu-

lation of adaptive (self-modeling) network models used here will then calculate the state 

values over time based on the dynamics for the states described by equation (1), thereby 

picking the values for the adaptive characteristics from the self-model states represent-

ing them, and gives the possibility to export the generated data for further investigation 

and visualization.  

3.2 The designed adaptive self-modeling network model 

Following the approach to Network-Oriented Modelling described in [24], a network 

model was created based on the literature review. The graphical representation of the 

connectivity of this model is depicted in Fig. 1, while Table 1 describes the states shown 
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in Fig. 1 in more detail. The model consists of 19 states, of whom twelve represent base 

level states, three portray first-order self-model states and four display second-order 

self-model states. The states in the first reification level (or first-order self-model level) 

represent the principle of Hebbian learning for two connections at the base level, while 

the states in the second reification level (or second-order self-model level) express met-

aplasticity, namely persistence of what is learned and the speed of learning.   

 The base-level causal relations can be described according to two groups, one con-

cerning the general stress and anxiety response, the other regarding the effects of phys-

ical exercise on the general stress and anxiety response. The general stress and anxiety 

response is mostly defined by the biological stress response and psychological emotion 

regulation. Like Fig. 1 shows, a stressor (ws) will lead to the preparation of the stress 

response (pssr), which will then have two effects. On one side, it will trigger the bio-

logical stress response (bsr) through activation of the HPA axis and the release of cor-

tisol. On the other side is the psychological stress response, depicted in the stress regu-

lation control state (sr). The biological and psychological stress response together will 

then cause the stress feeling (sf) in the individual, which through further causal relations 

will cause the feeling of anxiety (anx), which is controlled by the anxiety regulation 

control state (ar).  

 

 

Fig. 1. Connectivity of the second-order adaptive network model concerning anxiety and stress 

emotion regulation covering plasticity and metaplasticity. Interlevel relations are depicted by up-

ward connections (blue) and downward connections (pink-red). With a base level (pink plane) 

depicting the basic causal relations (black arrows), a first reification level (blue plane) depicting 

neuroplasticity and a second reification level (purple plane) depicting metaplasticity.  
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Both the causal relation between the stress feeling and the stress regulation, as well 

as the connection between the anxiety feeling and the anxiety regulation, are, however, 

influenced by the first-order self-model states. In this model, they are used to represent 

the Hebbian learning principle ‘what fires together, wires together’ ([18], p. 64). There-

fore, the weight of the connection from the feeling towards its respective control state 

was made adaptive by introducing the self-model states W. The W-states, representing 

the plasticity that is described by Hebbian learning, furthermore are influenced by a 

second-order self-model state representing the concept of metaplasticity. The respec-

tive H-states represent the speed factor  of W, while the M-states represent the per-

sistence factors  of W. The H-states intend to represent the principle of an increased 

adaptation speed and therefore learning speed. Research has shown that the adaptation 

speed itself shows adaptive characteristics, most notably an acceleration of the adapta-

tion process if stimulus exposure increases [16], also known as meta-adaptation [1]. In 

this model, the H-states’ activation should increase in value relative to its exposed stim-

uli. Therefore, such an increased level of stimulus exposure should relate to an increase 

in the learning speed over time. In this model, the H-state values are further influenced 

by neurotrophic factors (ntf). These lead to an increased adaptation speed, which will 

translate into improved neuroplasticity. 

Table 1. Description of the states of the second-order adaptive network model  

 

  

State nr State name Explanation Level 

X1 ws World state for stressor 

Base  

level 

X2 pssr Preparation state of stress response 

X3 bsr Biological Stress Response (HPA Axis) 

X4 

X5 

X6 

X7 

X8 

X9 

X10 

X11 

X12 

sf 

sr 

anx 

ar 
bmr 

ipe 

pe 
ntf 

oc 

Feeling of Stress 

Stress Regulation control state 

Feeling of Anxiety 

Anxiety Regulation control state 
Behavioural and Mood Responses 

Indirect Effects of Physical Exercise 

Physical Exercise 
Neurotrophic Factors 

Opioids and Cannabinoids 

X13 Tbsr 
First-order self-model state for the Biological Stress Responses acti-

vation treshold First-order  
self-model 

level 
X14 Wanx,ar First-order self-model state for connection weight anx,ar 

X15 Wsf,sr First-order self-model state for connection weight sf,sr 

X16 HWanx,ar 
Second-order self-model state for speed factor Wanx,ar  first-order 

self-model  self-model state Wanx,ar  

Second- 
order  

self-model  

level 

X17 MWanx,ar 
Second-order self-model state for persistence factor parameter 

Wanx,ar 
 first-order self-model  self-model state Wanx,ar  

X18 HWsf,sr 
Second-order self-model state for speed factor Wsf,sr  first-order 

self-model  self-model state  Wsf,sr  

X19 MWsf,sr 
Second-order self-model state for  persistence factor parameter 

Wsf,sr 
 first-order self-model  self-model state Wsf,sr 
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The above-described network, however, can be influenced by the effects of physical 

exercise. Physical exercise affects the stress and anxiety response of an individual in 

both a direct and an indirect manner.  

The indirect effect of physical exercise is represented by the ipe state, which influ-

ences both the HPA axis sensitivity through its threshold (represented by self-model 

state Tbsr) and the behavioural and mood responses (bmr). The indirect effect of phys-

ical exercise on the HPA axis is based on an increase of the biological stress responses 

threshold, while the behavioural and mood responses elevate the emotion regulation 

ability. The T-state in this network models influences the excitability of the Biological 

Stress Response related neurons. These influences result in a modification of the neu-

ron's response to the triggering synaptic activity [5, 7]. Therefore, an increase in the 

value of the self-model state Tbsr would result in lessened excitability of the HPA axis 

activating neurons. This should result in a changed reaction of the Biological Stress 

Response state (bsr) to input it receives from the stress response preparation state 

(pssr).  

The direct effects of physical exercise on stress and anxiety, comprise the release of 

Opioids and Cannabinoids (oc), which directly reduce the feeling of anxiety and the 

release of neurotrophic factors (ntf), which increase the brains' neuroplasticity. In the 

model, this causal relation is realized through a direct increasing influence of the neu-

rotrophic factors on the H-states, representing the learning speed.  

4 Simulations  

To obtain a full detailed design description of all characteristics of the model, it was 

specified in a standardized form in role-matrices format. This format describes all char-

acteristics that define the model: the connections and their weights, the speed factors 

and the combination functions used with their parameters. Moreover, the available ded-

icated software environment can use these matrices as input and run simulations for the 

model from it. Table 2, 3, 4, 5 in the Appendix [2] show the role-matrices for the first 

run scenario.  

To explore the claim of a reductive effect of physical exercise on anxiety, three dif-

ferent scenarios depicting different levels of physical activity integration into the indi-

vidual's life are performed. The simulation will represent the time of 8:00 until 22:00 

over three days. Each time point in the simulation corresponds to a timeframe of five 

minutes, resulting in a total of 504 Steps in our simulation. In each scenario, the indi-

vidual will be presented with a stressor from 12:30 until 13:30 to observe its effect on 

the model's different states. In Scenario 2 (below) and 3 [2], one or more physical ex-

ercises of 30 minutes will be added to each day.  

Scenario 1: No Exercising  

In the first scenario, the individual will be confronted with a stressor, lasting one hour, 

each of the three days, with the initial values chosen to depict an individual that already 

has a higher base level of stress. While the simulation's full result can be seen in Fig. 9 
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in Appendix [2], an examination of the results based on different parts of the model will 

take place. For this, the general model will be divided into three sections, one for the 

stress response, one for the anxiety response and one for the effects of physical exercise. 

For the first scenario however, given no physical exercise is present, only the stress and 

anxiety response will be inspected. In Fig. 2 (upper graph), the stress response and its 

related states are shown. As expected, the preparation state for the stress response gets 

triggered when a stressor is present, which subsequently also relates to an activated 

biological stress response and feeling of stress. With a slight delay, this results in acti-

vation of the Stress Regulation Control State, increases the adaptive connection weight 

(W-stress) and speed factor (H-stress).  

  

 

Fig. 2. Graphical Representation of the Stress Response (upper graph) and Anxiety Response 

(lower graph) in Scenario 1  

These increases are triggered as part of the Hebbian learning process, given the sim-

ultaneous firing of the feeling and control state. Moreover, the Activation Threshold of 

the Biological Stress Response (T-bsr) stays unaffected and constant, given no physical 

exercise is performed. As expected, the stress response is of similar nature each day 

and the level of stress persists over time. Furthermore, the constant high-stress level 

results in a constant decrease in the persistence factor (M-stress) virtually blocking 
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learning. The process only shows plateauing while the Hebbian learning process is trig-

gered.  

Contrary to the stress response, the anxiety response (lower graph in Fig. 2) is only 

slightly affected by the periodic occurrence of the stressor. Due to the direct correlation 

between stress and anxiety, this is expected behaviour. The stress feeling state does not 

show much volatility over time which is reflected in the correlated anxiety state. There-

fore, effects shown by the Hebbian learning states of the anxiety response occur in a 

significantly lower amplitude when compared with the stress responses Hebbian Learn-

ing states.  

Scenario 2: Occasional Workout   

In the second scenario (see Fig. 3), the individual will again be confronted with a one-

hour lasting stressor each of the three days.   

The initial values will again be chosen to reflect an individual with a higher baselevel 

of stress. Contrary to the first scenario, however, a physical exercise of 30 minutes at 

10:00 in the morning will be added. This corresponds to the physical exercise state 

being activated during the timepoints 24-30, 192-198, 360-366. For this we will need 

to change the function parameter specifications according to Table 6 in (Appendix, 

2021). The other specifications stay the same. To better understand the model's dynam-

ics, the behaviour of the different subsystems will again be examined separately. How-

ever, the simulation's full result can also be seen in Fig. 10 of (Appendix, 2021). As can 

be seen in Fig. 3, similar responses to the stressor as in Scenario 1 take place. However, 

these processes are influenced and disrupted to an extend by the effects of physical 

exercise. As expected better behavioural and mood responses and the decreased sensi-

tivity of the HPA axis result in a decreasing base level of the feeling of stress after 

physical exercise. This process is likely aided by strengthened Hebbian learning prin-

ciples. 

Another drastic change compared to Scenario 1 can be seen in the processes con-

nected to Hebbian learning. As the release of neurotrophic factors increases the neuro-

genesis, the learning speed (H-stress) increases significantly, which as a result also 

keeps the persistence factor (M-stress) on an stable but slightly increasing level. Inter-

estingly, however, the connection weight (W-stress) between the stress feeling and its 

emotion regulation control state, returns to a stable base level once outside influences 

subside. This suggests that there are not yet long-term persisting learning effects, at this 

level of exercise integration in one's life. Further, an increase in the HPA axis activation 

threshold (T-bsr) can be seen following physical activity. However, given the threshold 

returns to its baselevel at the time the stressor activates the biological stress response, 

no reduction in the response can be observed.  

Contrary to the first scenario, the feeling of stress in this scenario was more volatile, 

resulting in higher volatility of the states connected to the anxiety response. As ex-

pected, the periodically decreased feeling of stress and the increased behavioural and 

mood responses after physical activity led to a decreased feeling of anxiety after exer-

cises. This is aided by the anxiolytic effects of opioids and cannabinoids that are 



11 

released as a result of physical exercise. Moreover, the decrease of the stress feeling 

over time translates to a decrease of anxiety over time. 

 

  

Stress Response  

 

Anxiety Response  

Physical Exercise Effects  

 

Fig. 3. Graphical Representation of the Stress Response (upper graph) and Anxiety Response 

(middle graph) and physical exercising (lower graph) in Scenario 2  
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the anxiety feeling and regulation connection. This causes the persistence factor to re-

bound to higher levels in these times of increased activation of the Hebbian learning 

processes, leading to an overall fluctuating but only minimally decreasing persistence 

factor over time. As expected, these influences lead to a reduction of the anxiety base 

level.  

As Fig. 3, lower graph shows, physical exercise induces the acute release of neu-

rotrophic factors as well as opioids and cannabinoids. Through its indirect effects, phys-

ical exercise increases behavioural and mood responses for a short timeframe after the 

physical exercise ended.  

5 Discussion  

This paper aimed to describe the creation of a adaptive computational temporal-causal 

network model for the effects of physical exercise on stress and anxiety based on real-

world causal relations. According to the proposed paradigm shift in the view of psy-

chological disorders as dynamic networks [4, 6, 10, 15]. The model was built to recreate 

the known patterns as indirectly emerging from adaptive causal relations. The network 

model incorporates three types of adaptation principles to recreate Hebbian learning, 

excitability adaptation and adaptive adaptation speed.  

By the use of the network model and a dedicated software environment implemented 

as a MatLab script, three different scenarios were simulated, depicting different levels 

of integration of physical exercise into the individual's life. The first scenario portrayed 

three days of an individual being confronted with a stressor each day with no physical 

exercise and showed that the stress and anxiety level will always return to the same 

base level. In the second scenario, a workout of 30 minutes in the morning was added 

to the individual's routine, which, through direct and indirect effects, lead to a visible 

reduction of the stress and anxiety base levels over time. In the third scenario, in addi-

tion to the morning exercise, another workout in the evening was added. This resulted 

in a further extended reduction of the anxiety and stress base levels throughout the sim-

ulation.  

Overall, the model successfully showed emergent behaviour reflecting the empirical 

findings in the discussed literature, confirming its validity. Further this research contri-

bution enables a visualisation of the underlying effects of physical exercise on stress 

and anxiety. While this model, by the generated simulation graphs, confirms that phys-

ical exercise could positively influence the treatment of anxiety and should be pro-

moted, it could also act as a basis or extension of future virtual agent models to display 

these outcomes in a more relatable manner. Nevertheless, the presented model is not 

without limitations. While it reflects the causal relations on a macroscopic level, a more 

advanced model could incorporate the underlying mechanisms of the biological stress 

response and the emotion regulation in greater detail. Additionally, to create a holistic 

representation of the complex biological and neurological interdependencies of psycho-

logical disorders, a combination with additional computational models in this domain 

could be added as well.   
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Taking into consideration the numerous imbricating symptoms of anxiety and other 

psychological disorders like depression, further research may focus on the creation of 

a generalized model representing typical neurological and biological symptoms of   ser-

otonin and dopamine availability impacting disorders. This would enable broader pos-

sibilities in simulations and increase the comparability amid different models.  
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