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Abstract. Gossip protocols form the basis of many smart collective
adaptive systems. They are a class of fully decentralised, simple but ro-
bust protocols for the distribution of information throughout large scale
networks with hundreds or thousands of nodes. Mean field analysis meth-
ods have made it possible to approximate and analyse performance as-
pects of such large scale protocols in an efficient way that is independent
of the number of nodes in the network. Taking the gossip shuffle pro-
tocol as a benchmark, we evaluate a recently developed refined mean
field approach. We illustrate the gain in accuracy this can provide for
the analysis of medium size models analysing two key performance mea-
sures: replication and coverage. We also show that refined mean field
analysis requires special attention to correctly capture the coordination
aspects of the gossip shuffle protocol.

Keywords: Mean Field; Collective Adaptive Systems; Discrete Time Markov
Chains; Gossip protocols; Self-organisation.

1 Introduction and Related Work

Many collective adaptive systems rely on the decentralised distribution of infor-
mation. Gossip protocols have been proposed as a paradigm that can provide
a stable, scalable and reliable method for such decentralised spreading of in-
formation [22,6,3,16,9,8,4,2,21]. The basic mechanism of information spreading
followed by a gossip shuffle protocol is that nodes exchange part of the data
they keep in their cache with randomly selected peers in pairwise synchronous
communications on a regular basis.

Interesting performance aspects of such gossip protocols are the replication
of a newly inserted fresh data element in a network and the dynamics of network
coverage. Replication of a data element occurs when nodes exchange the data
element in pairwise communication. Network coverage concerns the the fraction
of the population of network nodes that have “seen” the data element since its

? This research has been partially supported by the Italian MIUR project PRIN
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introduction into the network, even if they may no longer have it in their cache
due to further exchanges with other peers.

Traditionally, these performance measures have been studied based on simu-
lation models. However, when large populations of nodes are involved, such sim-
ulations may be very resource consuming. Recently these protocols have been
studied using classic mean field approximation techniques [2,1]. In that classic
approach the full stochastic model of a gossip network, i.e. one in which each
node is modelled individually, is replaced by a much simpler model in which
the pairwise synchronous interactions between individual nodes are replaced by
the average effect that all those interactions have on a single node and then the
model of this single node is studied in the context of the overall average net-
work behaviour. Of course, the average effects may change over time as nodes
change their local states. This is taken into account in a mean field model by
letting the probabilities of interactions depend on the fraction of nodes that are
in a particular local state. Compared to traditional simulation methods, mean
field approximation techniques scale very well to large populations because these
techniques are independent of the exact population size3 allowing analysis that
is orders of magnitudes faster than discrete event simulation. This method of
derivation of a mean field model from a large population of interacting objects
relies on what is known as the assumption of “propagation of chaos” (also called
“statistical independence” or “decoupling of joint probabilities”) [19,7,10,17].
The assumption is based on the fact that when the number of interacting nodes
becomes very large, their interactions tend to behave as if they were statistically
independent.

In this paper we revisit an analysis of the gossip shuffle protocol by Bahkshi
et al. in [4,2,1] by using a refined mean field approximation for discrete time
population models that we developed in [12,13], and which was in turn inspired
by an earlier result for continuous time population models presented in [11].

Contributions The main contribution of this short paper (full version in [14]) is
a novel benchmark (clock-synchronous) DTMC population model of the gossip
shuffle protocol analysed using refined mean field analysis [12,13]. In particular:

– We show that, by using the refined mean field, a more accurate approxima-
tion can be obtained, compared to classical mean field approximation, for
medium size populations for this gossip protocol, but that this requires a
novel model that reflects the synchronisation effects of the pairwise interac-
tion of the original protocol.

– The refined mean field results we obtained are very close both to those
of independent Java based simulation from the literature in [2] (taken as
“ground truth” for comparison with our results) and to those of the event
simulation of the model itself, but several orders of magnitude faster and
independent of the system size.

3 As long as this size is large enough to obtain a sufficiently accurate approximation.
The computational complexity of these techniques do depend on the number of local
states of an object in a population.
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Like classic mean field approaches, the refined approach is also highly scalable
and computationally non-intensive. Therefore it is an interesting candidate for
being integrated with other analysis approaches such as (on-the-fly) mean field
model checking [18], which is planned in future work. The current study aims
at providing further insight in the feasibility of applying the refined mean field
approach, that implies the use of symbolic differentiation, on larger benchmark
examples and in the possible complications of such an analysis that need to be
taken into consideration.

2 Benchmark Gossip Shuffle Protocol

We consider the gossip shuffle protocol described in [15,1,2]. This particular
version has been extensively studied by Bahkshi et al., leading to an analytical
model of the gossip protocol [3], a classical mean field model [2] and a Java
implementation4 of a simulator for the protocol [2,1], which makes it a very
suitable candidate of a real-world application that allows for the comparison of
our results with those available in the literature. Fig. 1 recalls the pseudo code
of a generic shuffle protocol (adapted from [1]). Further details can be found
in [2,1].

while true do
wait (∆t time units)
B := randomPeer()
sA := itemsToSend(cA);
send sA to B;

sB := receive(·);
cA := itemKeep(cA\(sA\sB), sB\cA);

(a) An active node A

while true do

sA := receive(·);
sB := itemsToSend(cB);
send sB to sender(sA);
cB := itemKeep(cB\(sB\sA), sA\cB);

(b) A passive contacted node B

Fig. 1. Pseudo code of a generic shuffle protocol (adapted from [1]). cA and sA denote
the cache and selection of active node A. Similarly, cB and sB denote those of passive
node B. ∆t = Gmax . The operation ‘itemsToSend(ci)’ selects the items to be sent from
the cache ci. The operation ‘itemKeep(c,s)’ in node A decides which items to keep in
the cache (c) removing from the cache those selected for sending (sA) except those that
where received from B (sB), and adding to those the elements from sB that were not
yet in the cache of A. Similarly for the operation in node B.

Two main key measures that are of interest for this protocol are the transient
aspects of the replication of a newly introduced element in the network and that
of the coverage of the network, i.e. the fraction of network nodes that have seen

4 We thank Rena Bahkshi for sharing her Java simulator source code with us.
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the new data element when time is passing. These measures depend on a num-
ber of characteristics of the network. In the following we use N to denote the
size of the network, i.e. the number of gossiping nodes, n to denote the number
of different data items in the network, c to denote the size of the cache and s
to denote the size of the selected items from the cache to be exchanged with
a neighbour. In the context of this work, and for comparison with the results
presented in [1], the network is assumed to be fully connected. We consider a dis-
crete time variant of the protocol with a maximal delay between two subsequent
active data-exchanges of a node denoted by Gmax .

3 Background

In the sequel we use theoretical results on discrete time mean field approximation
[19,7,12]. We briefly recall the notation and main results in the following. We
consider a population model of a system composed of 0 < N ∈ IN identical
interacting objects, i.e. a (model of a) system of size N . We assume that the
set {0, . . . , n − 1} of local states of each object is finite; we refer to [12] for a
discussion on how to deal with infinite dimensional models. Time is discrete and
the behaviour of the system is characterised by a (time homogeneous) discrete

time Markov chain (DTMC) X(N)(t) = (X
(N)
1 (t), . . . , X

(N)
N (t)), where X

(N)
i (t)

is the state of object i at time t, for i = 1, . . . , N .
The occupancy measure vector at time t of the model is the row-vector DTMC

M (N)(t) = (M
(N)
0 (t), . . . ,M

(N)
n−1(t)) where, for j = 0, . . . , n − 1, the stochastic

variable M
(N)
j (t) denotes the fraction of objects in state j at time t, over the

total population of N objects:

M
(N)
j (t) =

1

N

N∑
i=1

1{X(N)
i (t)=j}

and 1{x=j} is equal to 1 if x = j and 0 otherwise. At each time step t ∈ IN each
object performs a local transition, possibly changing its state. The transitions
of any two objects are assumed to be independent from each other, while the
transition probabilities of an object may depend also on M(t), thus, for large
N , the probabilistic behaviour of an object is characterised by the one-step
transition probability n × n matrix K(m), where Kij(m) is the probability for
the object to jump from state i to state j when the occupancy measure vector is
m ∈ Un, the unit simplex of IRn

≥0, that is, Un = {m ∈ [0, 1]n |
∑n

i=1mi = 1}. In
this paper, for simplicity, we assume K(m) to be a continuous function of m that
does not depend on N . In the sequel, for reasons of presentation, we provide a
graphical specification of the relevant models. The computation of matrix K(m)
from such a model specification is straightforward.

3.1 Discrete Time Classical Mean Field Approximation

Below we recall Theorem 4.1 of [19] on classic mean field approximation, under
the simplifying assumptions mentioned above:
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Theorem 4.1 of [19] (Convergence to Mean Field) Assume that
the initial occupancy measure M (N)(0) converges almost surely to the
deterministic limit µ(0). Define µ(t) iteratively by (for t ≥ 0):

µ(t+ 1) = µ(t) K(µ(t)). (1)

Then for any fixed time t, almost surely, limN→∞M (N)(t) = µ(t).

The above result thus allows one to use, for large N , a deterministic approx-
imation µ of the average behaviour of a discrete population model.

3.2 Discrete Time Refined Mean Field Approximation

The following corollary illustrates the relationship between the refined mean field
result and the classic convergence theorem:

Corollary 1(i) of [12] Under the assumptions of Theorem 1 of [12],
it holds that for any coordinate i and any time-step t ∈ IN

E
[
M

(N)
i (t)

]
= µi(t) +

Vi(t)

N
+ o

(
1

N

)
.

In other words, the expected value of the fraction of the objects in local state
i of the full stochastic model with population size N at time t, is equal to the
classic limit mean field value µi(t) plus a factor Vi(t), divided by the population
size N plus a residual amount of order o

(
1
N

)
. Vi(t) satisfies a linear recurrence

relation that uses differentiation of functions and the covariance of µ(t), as shown
in Theorem 1 of [12] (see also [14]), and can be implemented efficiently using
symbolic differentiation software packages. It is easy to see that the larger is N
the smaller this additional factor gets. Essentially, the refined mean field takes
not only the first moment (the mean) but also the second moment (variance)
into consideration in the approximation. In [12] we have applied this discrete
time refined mean field approximation on a number of examples ranging from
the well-known epidemic model SEIR to wireless networks. Here we investigate
its application to a novel model of the more complex gossip shuffle protocol.

A proof-of-concept implementation of both the classical and the refined mean
field techniques and a discrete event simulator has been developed by one of
the authors of the present paper in F# using the DiffSharp package [5] for
symbolic differentiation. The results in this paper have been obtained using this
implementation which can be found at [20].

4 Refined Mean Field Approximation of the Gossip
Shuffle Protocol

The classical mean field model of the gossip protocol in [1], and aggregated
versions thereof in [14], are based on the principle of decoupling of joint proba-
bilities [19,7] and on a careful study of the pairwise probabilities of the various
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possible outcomes of a shuffle between two gossip nodes. This model provides
reasonable accuracy for systems with tens of thousands of nodes or more. How-
ever, discrete event simulation of this model for medium size systems shows that
it does not respect important properties of the original gossip shuffle protocol,
in particular the property that the new data element never gets lost from the
system. We have found that this is caused by an inaccurate modelling of the
effects of coordination between interacting nodes (see [14] for details).

We present a novel model in which (1) the system can never completely loose
the inserted data element and (2) the model reflects the effects of the pairwise
interaction between nodes satisfying basic properties of the original gossip shuffle
protocol while still adhering to the principle of decoupling of joint probabilities.
We distinguish the effects of a node getting a data element through exchanging it
with another node–in which case the total number of replicas of the data element
in the system remains the same–or through replication, i.e. the other node retains
its copy of the data element and the global number of the data element in the
system increases by one. With reference to Fig. 2, for what concerns point (1)
above, we introduce the state PD to the model representing that there always is
a gossip node in the network that possesses the data element.

D

O

FD

LD

PD I

get rep

1

loose rep

1-(get rep)
-(get exc)get exc

1-(loose rep)
get rep

get rep

loose exc

get exc

loose exc

get rep

1-(loose exc)
-(get rep)

1-(loose exc)
- (get rep)

1-(get exc)
-(get rep)

Fig. 2. Six-state model of an individual gossip node with rounds of length Gmax .

To address point (2), we introduce states FD and LD to distinguish between
the effect of interactions between gossip nodes. State FD represents the fact that
the gossip node received the data element for the first time via an exchange of
the data element with another node. State LD also represents the fact that the
node received the data element via an exchange, but that it had already seen
the data element in the past. Note that we can retrieve the total number of
gossip nodes in the system that do not possess the data element as the sum of
the nodes that are in states FD, LD, I and O because for each node in state
FD (LD, resp.) there is a node in the network that just lost its data element
in the synchronous shuffle with our current node. A gossip node can also get
involved in an interaction in which the data element is replicated, i.e. a node
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gives it to another one but also retains a copy itself, and one in which two nodes,
both possessing the data element, interact and one of them looses its copy. Note
that in this model it is not possible that both nodes loose their copy in a single
interaction. The conditional probabilities of pairs of interacting nodes obtaining
or loosing the data element can be expressed in terms of n (number of different
data elements), c (size of the cache) and s (number of selected elements for
exchange), as follows5:

P (OD|DO) = P (DO|OD) = s
c ∗

n−c
n−s

P (OD|OD) = P (DO|DO) = c−s
c

P (DD|OD) = P (DD|DO) = s
c ∗

c−s
n−s

P (OD|DD) = P (DO|DD) = s
c ∗

c−s
c ∗

n−c
n−s

P (DD|DD) = 1.0− 2.0 ∗ s
c ∗

c−s
c ∗

n−c
n−s

P (OO|OO) = 1.0

The probability functions of the state transitions in the model below depend
on m, i.e. the occupancy measure vector, the conditional probabilities, the ‘no
collision’ probability noc, and Gmax (see [14] for further details).

get exc (m) = 2 ∗ Gmax
(Gmax+1)2

(mD +mPD)P (OD|DO)noc

get rep (m) = 2 ∗ Gmax
(Gmax+1)2

(mD +mPD)P (DD|DO)noc

loose exc (m) = 2 ∗ Gmax
(Gmax+1)2

(mO +mI +mLD +mFD)P (OD|DO)noc

loose rep (m) = 2 ∗ Gmax
(Gmax+1)2

(mD +mPD)P (DO|DD)noc
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Fig. 3. Replication (left) and network coverage (right) of the data element in the
network for N = 100 with initially 99 nodes in the I-state and 1 node in the PD-state
for Gmax = 3. Average of 500 simulation runs of both the model and Java simulations.
Vertical bars show standard deviation for the Java simulation.

Fig. 3 shows the replication as sum of the number of nodes in states D and
PD and the coverage as the sum of the number of nodes in D, PD, FD, LD and O
for a network with N = 100, n = 500, c = 100 and s = 50 with initially one node

5 P (A′B′|AB) is the conditional probability of the state of an active-passive pair AB
to have state A′B′ after their interaction, where A,B,A′, B′ ∈ {O,D}, see [1,2].
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Fig. 4. Replication (left) and network coverage (right) of data element for N = 2500
with initially 2499 nodes in I and 1 in PD, for Gmax = 9. Average of 500 simulation
runs for both model and Java simulations. Vertical bars show standard deviation for
the Java simulation.

in state PD and all the others in state I. Besides the classic and refined mean
field approximations for the model in Fig. 2 and the Java simulation results of
the actual shuffle protocol, Fig. 3 also shows the average of the model simulation.
Note the good approximation of the simulation results by the refined mean field
even in this very small network. Similarly good results have been found for a
system with N=2,500 shown in Fig. 4. A first comparison of the (non-optimised)
performance of the implementation in F# of the analysis for N=2,500, producing
the results in Fig. 4, is: 0.5s (classic mean field); 25.5s (refined mean field6); 7m
1.4s (fast model simulation [19], 500 runs); 3h 42m 41.5s (Java simulation, 500
runs) on a MacBook Pro, Intel i7, 16GB.

5 Conclusions

We have developed a novel mean field model for the shuffle gossip protocol with
which more accurate approximations for medium size gossip protocols can be
obtained via refined mean field approximation techniques. This model respects
key aspects of the protocol such as the effects of different kinds of interactions
and the fact that a new data element cannot be lost by the system as a whole.
Accurate approximation of medium size systems is important because many
practical systems consist of many, but not a huge number of, components and
simulation of such systems is still a resource consuming effort. A refined mean
field approximation can provide very fast and accurate approximations.

6 Recall that the mean field analyses times are independent of the size of the system.
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