N

N

CHOReVOLUTION: Hands-On In-Service Training for
Choreography-Based Systems
Marco Autili, Amleto Di Salle, Claudio Pompilio, Massimo Tivoli

» To cite this version:

Marco Autili, Amleto Di Salle, Claudio Pompilio, Massimo Tivoli. CHOReVOLUTION: Hands-On
In-Service Training for Choreography-Based Systems. 22th International Conference on Coordination
Languages and Models (COORDINATION), Jun 2020, Valletta, Malta. pp.3-19, 10.1007/978-3-030-
50029-0_1 . hal-03273994

HAL Id: hal-03273994
https://inria.hal.science/hal-03273994

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03273994
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CHOReVOLUTION: Hands-on In-service
Training for Choreography-based Systems

:1:1[0000—0001—5951—1567 ; 1[0000—0002—0163—9784
Marco Autili'l 5671 Amleto Di Sallel! l

Claudio Pompilio![0000—-0002-7925-6943] ' 14 Massimo
Tivolil [0000—0001-9290—1997]

University of L’Aquila, Italy
{marco .autili, amleto.disalle, claudio.pompilio,
massimo.tivoli}@univaq.it

Abstract. CHOReVOLUTION is a platform for the tool-assisted de-
velopment and execution of scalable applications that leverage the dis-
tributed collaboration of services specified through service choreogra-
phies. It offers an Integrated Development and Runtime Environment
(IDRE) comprising a wizard-aided development environment, a system
monitoring console, and a back-end for managing the deployment and
execution of the system on the cloud. In this tutorial paper, we describe
the platform and demonstrate its step-by-step application to an indus-
trial use case in the domain of Smart Mobility & Tourism.

(Demo Video: youtu.be/ae2jI9SYsvg)

(GitHub: https://github.com/chorevolution/CHOReVOLUTION-IDRE)

Keywords: Service Choreographies - Automated Synthesis - Dis-
tributed Computing - Distributed Coordination - Adaptation

1 Introduction

The Future Internet [15] is now a reality that reflects the changing scale of the
Internet. The expanding network infrastructure is supporting the today’s trend
toward the fruitful cooperation of different business domains through the in-
terorganizational composition of a virtually infinite number of software services'.
This vision is embodied by reuse-based service-oriented systems, in which ser-
vices play a central role as effective means to achieve interoperability among
different parties of a business process, and new systems can be built by reusing
and composing existing services.

Service choreographies are a form of decentralized composition that model
the external interaction of the participant services by specifying peer-to-peer
message exchanges from a global perspective. When third-party (possibly black-
box) services are to be composed, obtaining the distributed coordination logic
required to enforce the realizability of the specified choreography is non-trivial
and error prone. Automatic support is then needed [1, 3].

! http://www.fivare4industry.com

2 M. Autili et al.

The CHOReVOLUTION H2020 EU project? develops a platform for the gen-
eration and execution of scalable distributed applications that leverage the dis-
tributed collaboration of services and things by means of service choreographies.
In particular, it realizes an Integrated Development and Runtime Environment
(IDRE) that comprises a wizard-aided development environment, a system mon-
itoring console, and a back-end for managing the deployment and execution of
the system on the cloud.

The CHOReVOLUTION IDRE makes the realization of choreography-based
smart applications easier by sparing developers from writing code that goes be-
yond the realization of the internal business logic related to the provisioning of
the single system functionalities, as taken in isolation. That is, the distributed
coordination logic, which is needed to realize the global collaboration prescribed
by the choreography specification, is automatically synthesized by the IDRE,
without requiring any specific attention by developers for what concerns co-
ordination aspects. Furthermore, developers can also more easily reuse existing
consumers/providers services. These aspects have been appreciated by the indus-
trial partners in that the approach permits to develop distributed applications
according to their daily development practices.

The IDRE is open-source and free software, available under Apache license.
The binaries and the source code of version 2.2.0 can be downloaded at the
following URL https://github.com/chorevolution/CHOReVOLUTION-IDRE/
releases. Documentation® is also available.

The paper is organized as follows. Section 2 briefly introduces the problem
solved by the CHOReVOLUTION IDRE together with a brief discussion on
related work. Section 3 describes the overall approach supported by CHOReV-
OLUTION, and Section 4 describes the actual development process supported
by IDRE. Section 5 gives an overview of the main components constituting the
IDRE. Section 6 presents the IDRE at work on an industrial use case in the
Smart Mobility and Tourism domain, and Section 7 concludes the paper.

2 Problem statement and related works

Choreographies model peer-to-peer communication by defining a multiparty pro-
tocol that, when put in place by the cooperating participants, allows reaching
the overall choreography goal in a fully distributed way. In this sense, chore-
ographies differ significantly from other forms of service composition such as
orchestrations, where all participants (but the orchestrator) play the passive
role of receiving requests by the orchestrator only.

So far, choreographies have been solely used for design purposes, simply be-
cause there was no technological support for enabling a smooth transition from
choreography design to execution. In the literature, many approaches have been
proposed to deal with the foundational problems of checking choreography re-
alizability, analyzing repairability of the choreography specification, verifying

2 http://www.chorevolution.eu
3 https://github.com/chorevolution/CHOReVOLUTION-IDRE/wiki/User-Guide

A Tutorial on Automated Synthesis of Choreography-based Systems 3

conformance, and enforcing realizability [4,8,10,11,14,18,19]. These approaches
provide researchers with formal means to address fundamental aspects of chore-
ographies. They are based on different interpretations of the choreography in-
teraction semantics, concerning both the subset of considered choreography con-
structs, and the used formal notations.

The need for practical approaches to the realization of choreographies was
recognized in the OMG’s BPMN 2.0* standard, which introduces dedicated
Choreography Diagrams, a practical notation for specifying choreographies that,
following the pioneering BPMN process and collaboration diagrams, is amenable
to be automatically treated and transformed into actual code. BPMN2 chore-
ography diagrams focus on specifying the message exchanges among the par-
ticipants from a global point of view. A participant role models the expected
behavior (i.e., the expected interaction protocol) that a concrete service should
be able to perform to play the considered role.

When considering choreography-based systems, the following two problems
are usually taken into account: (i) realizability check — checks whether the chore-
ography can be realized by implementing each participant so as it conforms to
the played role; and (ii) conformance check — checks whether the set of services
satisfies the choreography specification. In the literature, many approaches have
been proposed to address these problems, e.g., [8,9,11,13,16,17,19-21].

However, to put choreographies into practice, we must consider realizing them
by reusing third-party services. This leads to a further problem: the automatic
realizability enforcement problem. It can be informally phrased as follows.

Problem statement: given a choreography specification and a set of existing
services, externally coordinate and adapt their interaction so to fulfill the
collaboration prescribed by the choreography specification.

By taking as input a BPMN2 Choreography Diagram, and by exploiting a
service inventory where existing services are published in order to be reused for
choreography realization purposes, a set of software artefacts are automatically
generated in order to implement the adaptation and distributed coordination
logic prescribed by the choreography specification. These artefacts adapt and
coordinate the interaction among the services — selected as suitable choreogra-
phy participants — in order to ensure that their distributed cooperation runs
by performing the flows specified in the BPMN2 Choreography Diagram only,
hence preventing both interface and interoperability mismatches (application-
and middleware-level adaptation) and the execution of possible flows violating
the specification (correct coordination). Furthermore, when needed, specific se-
curity policies can be enforced on the participants interaction so to make the
choreography secure. These policies concern correct inter-process authentication
and authorization. The generated artefacts are:

— Binding Components (BCs) serve to ensure middleware-level interoper-
ability among the possibly heterogenous services involved in the choreography.

* http://www.ong.org/spec/BPMN/2.0.2/

4 M. Autili et al.

For instance, a BC can be generated in order to make a SOAP web service able
to communicate with a REST service.

— When needed, Security Filters (SFs) secure the communication among
involved services by enforcing specified security policies.

— Abstract services defined in the choreography specification characterizes the
expected interface of the choreography participants. When using the IDRE to
implement the specified choreography participants, concrete services (possibly
black-box) are selected from a service inventory and reused. Thus, a concrete
service has to match the interface of the participants it has to realize. Here,
Adapters (As) come into place. That is, if needed, an Adapter is used to adapt
the interface of a concrete service in order to match the one of the abstract service
it implements.

— Coordination Delegates (CDs) supervise the interaction among the in-
volved participants in order to enforce the service coordination logic prescribed
by the choreography specification in a fully-distributed way. In other words,
CDs act as distributed controllers. That is, they ensure that the distributed in-
teraction among the reused concrete services will run according to the execution
flows described by the choreography specification, hence preventing distributed
interactions that could violate the specification.

~ M1 ~m3 ~ms ~wmr - CO"SUTQF
H H e.g., Client A
A A 3 c (e-g pp)
=

. ™ T2 b i b T4
_/ ™ _’O C
D B B D D

M2 BEime B=ive

H

Prosumer

Provider (e.g., Google)

Fig. 1. BPMN2 choreography diagram example

For those readers new to choreographies, Figure 1 shows a simple example
of a BPMN2 Choreography Diagram. Choreography diagrams define the way
business participants coordinate their interactions. The focus is on the exchange
of messages among the involved participants. A choreography diagram models
a distributed process specifying activity flows where each activity represents a
message exchange between two participants. Graphically, a choreography task
is denoted by a rounded-corner box. The two bands, one at the top and one at
the bottom, represent the participants involved in the interaction captured by
the task. A white band is used for the participant initiating the task that sends
the initiating message to the receiving participant in the dark band that can
optionally send back the return message.

The choreography in Figure 1 involves four participants, A, B, C, and D, for
the execution of four sequential tasks, T1, T2, T3 and T4. Specifically, A sends
the message M1 to D, enabling it for the execution of T1. After that, D replies
to A by sending the message M2. At this point, A sends M3 to B that, after the
execution of T2, replies M4 to A and sends M5 to C. Only when M5 is received by
C, it executes T3, replies M6 to B and sends M7 to D. Finally, D executes T4 and
the choreography ends.

A Tutorial on Automated Synthesis of Choreography-based Systems 5

By analyzing the choreography, we can distinguish three different types
of participants: consumer, provider, and prosumer (i.e., both consumer and
provider). For instance, considering a reuse-based development scenario in which
existing services are published in a suitable service inventory, the consumer par-
ticipant A might be played by an existing Client App; the provider participant D
by an existing Web Service, e.g., Google Maps; B and C might be two prosumers
that have to be developed from scratch in order to realize the choreography.

. . C Consumer Provider
. Business Logic —e
[a:A] [B] [C] m Layer Interface Interface
* e P

) or Existing Service
Middleware

? @ — Layer Generated Service

E Binding Component
A A Protocol
Aa CD_C 'CD_A Adaptation Layer
...

-4

Protocol

CD_A —@— CD_B —- CD_C Coordination Layer CD Coordination

i Delegate

Fig. 2. Choreography architectural style (a sample instance of)

Figure 2 shows architecture of the system that realizes the choreography
specified in Figure 1, and that is automatically generated by the IDRE. The top-
most layer contains the services representing the business logic. In particular, a: A
denotes that the role of the consumer participant A is played by a, the Client
App in our example; d:D denotes that the role of the provider participant D
is played by d, an existing provider service to be reused, whereas, concerning
the participants B and C, we do not make use of the notation x:X simply to
indicate that they are not existing prosumer services and thus they can be either
implemented from scratch or partially reused (for the provider part). Then, the
second layer contains the BCs to cope with possibly needed middleware-level
protocol adaptation, e.g., REST versus SOAP adaptation. It is worth mentioning
that SOAP is the default interaction paradigm for the underlying layers. Finally,
the last two layers include the Adapter and CD artefacts for adaptation and
coordination purposes, respectively. Note that Figure 2 shows the case in which
the participants B and C are implemented from scratch, and hence BCs together
with As are not needed.

The generated artefacts are not always required; rather, it depends on the
specified choreography and the characteristics of the existing services (e.g.,
application-level interaction protocols, interface specifications, middleware-level
interaction paradigms) that have been selected to instantiate the roles of the
choreography participants. For instance, for this illustrative example, no secu-
rity policy is specified and, hence, no SF is generated.

6 M. Autili et al.

3 CHOReVOLUTION approach

This section describes the CHOReVOLUTION approach for realizing service
choreographies by possibly reusing existing services. The approach distinguishes
two main phases: “From idea to model” and “From model to runtime”.

(\3: further refining

) Reserve
<= [Fnapol
Flight
S
2: refining the reasoning

- to establish the workflow
Table among tasks
& coming out with the

1: start reasoning on the model final BPMN2-based model
to identify possible tasks
achieving the business goals

D ™ % +
e L. " 4 i \ \

.'—/ - _" = .m»'; ', ”' - ,'-w : o .A - ; i L e - = ‘, - = - 2
!l:l] tﬁ 28 T e
Domain Business Software -®- e
expert manager engineer o i iy BN s-urocin

Fig. 3. From idea to model

From idea to model — As shown in Figure 3, system modelers seat to-
gether and cooperate to set what are the business goals of the system they have
in mind. For instance, a possible goal might be: assisting travelers from arrival,
to staying, to departure. For that purpose, system modelers identify the tasks
and the participants that will perform them so as to achieve the goal, e.g., re-
serving a taxi from the local company, purchasing digital tickets at the train
station, performing transactions through services based on near field commu-
nication in a shop (step 1). Once business tasks have been identified, system
modelers specify how the involved participants must collaborate as admissible
flows of the identified tasks, hence producing an high-level specification of the
system to be (steps 2 and 3). Note that the definition of the high-level specifica-
tion is not covered by the CHOReVOLUTION approach. Thus, system modelers
can use the notation they are more comfortable with. After the complete work-
flow among tasks has been established, the high-level specification is concretized
into a BPMN2 Choreography Diagram (step 4), which, as introduced above,
represents the choreography model the IDRE requires to start with in order to
realize the specified system.

From model to runtime — As shown in Figure 4, starting from the chore-
ography diagram, the developer interacts with the IDRE in order to generate the
code of the needed Binding Components, Adapters and Coordination Delegates,

A Tutorial on Automated Synthesis of Choreography-based Systems 7

(2]

Running choreography

o>
' Choreography
I developer == |ihz:>46
\ #0000
=

=
e CHOReVOLUTION (7 3 i %
i IDRE T
& - P g—o-qz—% =)
o o ol

o —— g CHOReVOLUTION
- Cloud Infrastructiure

i
i
,
]
i
i
|
i
1
L
i
i
{Ge:

Services and things
WSDL

Fig. 4. From model to runtime

that are used to correctly implement the specified choreography. As already in-
troduced, a service inventory is also accounted for. It contains services published
by providers that, for instance, have identified business opportunities in the do-
main of interest. Providers can be transportation companies, airport retailers,
local municipalities, etc., which can be reused in the resulting choreographed
system. By exploiting the Enactment Engine provided by the IDRE, the pro-
duced software artefacts are deployed over the Cloud infrastructure, the resulting
choreography is enacted and executed.

4 CHOReVOLUTION development process

The CHOReVOLUTION development process consists of a set of core code gen-
eration phases (see Figure 5) that takes as input a choreography specification and
automatically generates the set of additional software entities previously men-
tioned. When interposed among the services, these software entities “proxify”
the participant services to externally coordinate and adapt their business-level
interaction, as well as to bridge the gap of their middleware-level communication
paradigms and enforce security constraints.

Validation — This activity validates the correctness of the choreography speci-
fication against the constraints imposed by the BPMN2 standard specification.
The goal is to check practical constraints concerning both choreography realiz-
ability and its enforceability.

Choreography Projection — Taking as input the BPMN2 Choreography Dia-
gram and the related Messages XML schema, this activity automatically extracts

8 M. Autili et al.

"""" Choreography Specification
BPMN2
Messages XML

Choreography Schema

Diagram

Validation

@ h Participant Model
0 re_ogr4a phy (BPMN2 Choreography
Projection Diagram)

‘ .
Service Selection eenteny
Description o
BC Generation
SF Generation

Choreography
Architecture Generation
ct "
Choreography Architecture
Deployment Generation Description

Choreography
CD Generation Deployment Description

Adapter
Generation

d:¥

<o

Fig. 5. CHOReVOLUTION development process

all the choreography participants and applies a model-to-model (M2M) trans-
formation to derive the related Participant Models, one for each participant. A
participant model is itself a BPMN2 Choreography Diagram. It contains only
the choreography flows that involve the considered participant. The generated
participant models will be then taken as input by the Coordination Delegate
(CD) Generation activity.

Selection — This activity is about querying the Service Inventory in order to
select concrete services that can play the roles of the choreography participants.
Once the right services have been selected, the related description models will
be used to generate the Binding Components (BCs), Adapters (As), and Coor-
dination Delegates (CDs).

BC Generation — BCs are generated when the middleware-level interaction
paradigm of a selected service is different from SOAP®, which is used by the
CDs as the middleware-level interaction paradigm.

SF Generation — SFs are generated for those (selected) services having security
policies associated. SFs filter the services interactions according to the specified
security requirements.

Adapter Generation — When needed, adapters allow to bridge the gap be-
tween the interfaces and interaction protocols of the selected services and the
ones of the (respective) participant roles they have to play, as obtained via pro-
jection. In other words, adapters solve possible interoperability issues due to
operation names mismatches and I/O data mapping mismatches (see [6,22]).

% http://wuw.w3.org/TR/soap/

A Tutorial on Automated Synthesis of Choreography-based Systems 9

CD Generation — CDs are in charge of coordinating the interactions among
the selected services so as to fulfill the global collaboration prescribed by the
choreography specification, in a fully distributed way (see [2,3,5,7]).
Choreography Architecture Generation — Considering the selected services
and the generated BCs, As, and CDs, an architectural description is automat-
ically generated, and a graphic representation of the choreographed system is
provided, where all the system’s architectural elements and their interdependen-
cies are represented.

Choreography Deployment Generation — The last activity of the devel-
opment process concerns the generation of the Choreography Deployment De-
scription (called ChorSpec) out of the Choreography Architecture model. The
deployment description will be used for deploying and enacting the realized
choreography.

5 CHOReVOLUTION IDRE

As depicted in Figure 6, the CHOReVOLUTION IDRE is layered into: a front—
end layer (1), a back—end layer (2), and a cloud layer (3).

The Front-end layer (1) cHoRavOLUTION CHORGVOLUTION
consists of two components: a ., L I e sonsers .
development studio and a web < eclipse we
—ervice
console. n %ﬁde,er 5 @ m]]]
H

The C H O ReVO LU_ [g%‘ {§“§¥:£2::E) Identity and Enactment Manager Console
TION Studio is an Eclipse- :/?:d Al
ba‘sed IDE tha‘t allOWS for (1) Service Modeler Choreography Execution Monitor
designing a BPMN2 Choreog-
raphy Diagrams; (ii) defining 1 Adapters
all the details required to comanirss [OL7E O] Somnation
instrument the interaction ’ Synthesis Processor D 1 security

-
Filters Federation Server —'
H

among the services involved
m the C.horeograph)., (e g K @g‘o Service Inventory

service signatures, identity 2| EnactmentEngine Identity Manager
attributes and roles); (iii)
wizarding the code generation

phases. (o)
ice @ ’

The CHOReVOLU- S
TION Console is a web (e,
application based on Apache Ly
Syncope®. It allows to (i)
configure, administer, and
trigger actions on running 3
services and choreographies;

Service
Service

Y Fig. 6. CHOReVOLUTION IDRE overview
https://syncope.apache.org/

10

M. Autili et al.

(i) monitor the execution of a choreography with respect to relevant parameters,
such as execution time of choreography tasks, number of messages exchanged,
end-to-end deadlines, etc.

The Back-end layer (2) consists of the following components.

The Synthesis Processor is realized by a set of REST services that imple-
ment the model transformations to generate BCs, SFs, CDs, As, the archi-
tecture, and the deployment descriptor, as described in previous sections.

The Enactment Engine (EE) is a REST API that extends the Apache
Brooklyn project”. It automatically deploys the choreography according to
its deployment description by using the Cloud Layer. The EE also interacts
with the Identity Manager to include into the deployment description the ac-
tual deployment and runtime details. Then, once a choreography is deployed
and running, the EE listens for command requests from the Identity Manager
for runtime choreography control. It is worth noticing that, although choreog-
raphy monitoring and control is performed by centralized IDRE components
(e.g., EE and IdM), the realization and running of the choreography is fully
distributed into the various artefacts generated by the Synthesis Processor.

The Federation Server handles the runtime authentication and authoriza-
tion for services that uses different security mechanism at the protocol level
by storing various credentials on behalf of the caller.

The Identity Manager (IdM) is based on Apache Syncope project also.
It is responsible for managing users and services. In particular, the IdM is
able to query the services for supported application contexts and played roles;
force a specific application context for a certain service (put in “maintenance”
or disable/enable). The Service Inventory is a sub-component of the IdM. It
acts as a central repository for the description models of the services and
things that can be used during the synthesis process.

The Cloud layer (3) executes choreography instances on a cloud infrastructure
and adapts their execution based on the actual application context.

At execution time, for each choreography, in the CHOReVOLUTION cloud,
there are (i) a set of choreography instances at different execution states;
(ii) a set of virtual machines executing a custom-tailored mix of services
and middleware components to serve different parts of the choreography.
Virtual Machines are installed and configured with services according to se-
lectable policies. Due to the fact that EE is based on Apache Brooklyn, the
CHOReVOLUTION IDRE can integrate with different Infrastructure as a
Service (IaaS) platforms (e.g., Open Stack®, Amazon EC2°).

" https://brooklyn.apache.org/

8 https://www.openstack.org/
9 https://aws.amazon.com

A Tutorial on Automated Synthesis of Choreography-based Systems 11

6 Illustrative example

This section describes the CHOReVOLUTION IDRE at work on a Smart Mobil-
ity and Tourism (SMT) use case. Figure 7 shows the specified BMPN2 choreog-
raphy diagram. The SMT choreography is used to realize a Collaborative Travel
Agent System (CTAS) through the cooperation of several content and service
providers, organizations and authorities. It involves a mobile application as an
“Electronic Touristic Guide” that exploits CTAS to provide both smart mobility
and touristic information.

getTouristicGuideRequest

vvvvv

getMobiliyintoRequest getTourisminfoRequest
erec STAwp
Tour
—> GetTo
Gat stion = Gat s
[TourstAgent |
':’mmq nformation Pianner 1 Tourism nformation Plamer |
e (R e
Pubic Transport

ation Planner
Y [VR

Fig. 7. Smart Mobility and Tourism choreography

The choreography starts with the mobile application STApp detecting the
current position of the user, and asking for which type of point of interest to
visit and which type of transport mode to use. From this information, Tourist
Agent initiates two parallel flows in order to retrieve the information required
by the “Electronic Touristic Guide” (see the parallel branch with two outgoing
arrows after the choreography task Get Tourist Guide). In particular, in the left-
most branch of the choreography, Mobility Information Planner is in charge
of the retrieval of smart mobility information according to the selected transport
mode (see the conditional branching), while in the right-most branch, Tourism
Information Planner is responsible for gathering touristic information. After
that, the two parallel flows are joined together to produce the data needed for
the “Electronic Touristic Guide” (see the merging branch with two incoming
arrows in the bottom side of the choreography). Finally, the guide is shown to
the user by means of STApp.

In the remainder of this section, the application of the IDRE to the SMT
use case is discussed by distinguishing the actions performed by the two possi-
ble types of users: service providers and choreography developers. A user guide
to replicate the example can be found at https://github.com/chorevolution/
CHOReVOLUTION-IDRE/wiki/User-Guide.

Service Provider — A service provider uses the IDRE to publish the de-
scription models of the services into the Service Inventory. The IDRE allows to

12 M. Autili et al.

deal with heterogeneous services. It provides a uniform description for any ser-
vice, given by means of the Generic Interface Description Language (GIDL) [12]
or the WSDL!? in case of SOAP services. GIDL supports interface description
for any kind of possible services (e.g., REST services). As introduced above, the
published services are selected in order to play the participants roles of a chore-
ography. Then, the next phases will use the services’ models to generate BCs,
SFs, CDs, and As.

Referring to the SMT example, the service provider has to create a Ser-
vice/Thing project inside the CHOReVOLUTION Studio by using a GIDL
description for the following services: Journey Planner, Parking, Traffic,
Public Transportation, Personal Weather Statioms, Poi and News.

Choreography Developer — A developer uses the CHOReVOLUTION
Studio to model a choreography and to realize it. The developer has to create a
CHOReVOLUTION Synthesis project. Then, she models the BPMN2 choreog-
raphy diagram by using the Eclipse BPMN2 choreography modeler ! embedded
in the Studio. Afterwards, the developer starts the synthesis process. The first
two activities of the process (i.e., Validation and Choreography Projection) do
not require any user interaction. The other activities are supported by suitable
wizards, as discussed in the following.

— Selection. For each participant, the developer selects the corresponding con-
crete service, as published into the Service Inventory. For instance, for the SMT
choreography, the above seven mentioned services.

Binding Component Generation

@ The BC generation activity concerns the generation of the Binding Components. BCs are generated when the interaction paradigm of a selected service (or thing)
is different from SOAP, which is the default interaction paradigm.

Non SOAP Provider participants:

Participant Service ID Service Name Service Location Interface Description Type
Journey Planner 68dfafc2-f8b0-4e33-9faf-c2f8b0ee3346 JourneyPlanner http://ge-srv.e-mixer.com/Rest/Jou... GIDL

Parking 6e5f0c55-d389-48¢1-9f0c-55d38948c1bc Parking http://srvwebri.softeco.it/t-cube/Re... GIDL

Traffic 8510f31¢c-1bfb-41a9-90f3-1c1bfb51a9bd Traffic http://cho-noauth-srv.e-mixer.com/... GIDL

Public Transportation df53e511-e353-4d41-93e5-11e3533d41c1 PublicTransportation http://cho-noauth-srv.e-mixer.com/... GIDL

Personal Weather Stations ed999c52-f506-4b4b-999c-52f506cb4bee Personal Weather Stations http://cho-srv.e-mixer.com/service... GIDL

Poi 7d39107b-862e-4978-b910-7b862e497815 Poi http://srvwebri.softeco.it/t-cube/Re... GIDL

News 51340ccf-95¢5-47b8-b40c-cf95c577b8c2 News http://srvwebri.softeco.it/t-cube/Re... GIDL

Interaction paradigm of the Client participant: REST B

Fig. 8. BC generation activity

— BC Generation. Figure 8 shows the wizard that is used to configure the BCs
generator for those selected services that do not rely on SOAP. Considering the
SMT example, all the selected services are REST services. Thus, in Figure 8,
they are all listed in the wizard together with their GIDL description.

— SF Generation. None of the services for the SMT choreography defines security
policies. Therefore, the SF Generation step is skipped.

— Adapter Generation. We recall that some mismatches can arise due to possible
heterogeneities between the interfaces of the abstract services in the specification
and the ones of the concrete services selected from the inventory (e.g., operation
names mismatches and I/O data mapping mismatches).

10 https://wuw.w3.org/TR/wsd120-primer/
1 https://www.eclipse.org/bpmn2-modeler/

A Tutorial on Automated Synthesis of Choreography-based Systems 13

Participant to Service Adapter Generation

€ Please create all the Adapter(s) before proceeding.

Participant(s) that needs to be mapped with Service(s):

Initiating Participant Task Name Receiving Participant Receiving Participant Service Service Location Adapter Model
Mobility Information Planner

Get Trips Information Journey Planner JourneyPlanner http://ge-srv.e-mixer.com/Rest/...

Get Parking Information Parking Parking http://srvwebri.softeco.it/t-cube...

Get Traffic Information Traffic Traffic http://cho-noauth-srv.e-mixer.c...

Get Public Transportation Info Public Transportation i tation http://ch h-srv.e-mixer.c...
Tourism Information Planner

Get Meteorological Information Personal Weather Stations http://chs 'V.e-MmiXer.com/servi...

Get Poi List Poi Poi http://srvwebri.softeco.it/t-cube...

Get Latest News News News http://srvwebri.softeco.it/t-cube...

Fig. 9. Adapter generation activity

[BON) CHOReVOLUTION Synthesis Processor Wizard

Participant Mapping
@ Mapping Participant Mobility Information Planner with Role Public Transportation. Click on the square to

start mapping the selected Choreography Item, then click on the triangle to apply the mapping with the selected Service Item.
Choreography Task Mapping Service Operations

& Task Name: Get Public Transportation Info — > & Operation Name: publicTransportation
V @ Task N Get Public T tation Inf —¥ @ O tion N blicTr tati
V¥ @ Input Message: latestPTRequest [] » — @ Input Message: request

o type : string - (?) —m———— » W lat : double - (1)
V¥ @ Output Message: latestPTResponse [] » W lon : double - (1)
V @ publicTransportNews : NewsType - (*) — i p — @ Output Message: response
W name : string - (1) [] ———¥ _ outputDataType : outputDataType - (+)
W description : string - (1) [} . c:string - (1)
W startDate : dateTime - (1) [] . did : integer - (1)
W endDate : dateTime - (1) [} . id :integer - (1)

. mod : integer - (1)
. start : string - (1)
w t:string - (1)

111

®@ AUTO-MAP Cancel

Fig. 10. Adapter Mapping

Regarding the SMT choreography, all the selected services exhibit some
mismatches with respect to the corresponding choreography participants. The
Adapter Generation wizard asks the developer for specifing the needed adap-
tation logic. In particular, the wizard shows all the choreography tasks that
require adaptation, they are grouped by their initiating participant, see the left-
most column in Figure 9. By clicking on the button labeled with “...” a new
dialog window is opened, as shown in Figure 10.

At this stage, the developer can map task messages to service operations mes-
sages. The elements identified with the red shapes are mandatory to be mapped,
whereas those in orange are optional. In order to ease the mapping definition,
the wizards provides a “AUTO-MAP” functionality to automatically generate the
mappings by performing a syntactic binding to be refined afterwards.

— CD Generation. The last step of the wizard concerns the Coordination Dele-
gates generation (Figure 11).

If needed, the developer can specify “causality” correlations between different
choreography tasks. Two tasks are correlated when they respectively represent
an asynchronous request (the first task) and the subsequent callback (the second
task). This also means that the initiating (resp., receiving) participant of the first
task must be the receiving (resp., initiating) one of the second task. Consider-

14 M. Autili et al.

ing the SMT choreography, the mobile application starts the choreography by
sending the user preferences (current position, type of transport mode to use,
etc.) and finally it gets back all the information needed to show an “Electronic
Touristic Guide” to the user. Thus, the developer has to specify a correlation
between the task Get Tourist Guide and the task Set Tourist Guide.

Coordination Delegate Generation
The CD generation activity concerns the generation of the Coordination Deleaates. The CDs coordinate the

interactions among the selected services (or things) in order to fulfill the global collaboration
prescribed by the choreography specification, in a fully distributed way.
Client participants:

Participant Generate CD Name Task Correlations
STApp cdSTApp

Prosumer participants:

Participant Generate CD Name
Tourist Agent cdTouristAgent
Mob

. Correlation Tasks
@ Set the Task Correlations for the "STApp" Client.

Tou

Choreography Task Correlated With
Get Tourist Guide Set Tourist Guide

@ oK

Fig.11. CD generation activity

By clicking on the Finish button, all the software artefacts (BCs, SFs, ADs,
CDs) are generated. In addition, for each participant that acts as both an initiat-
ing participant in some task and a receiving participant in a different task (i.e.,
Tourist Agent, Mobility Information Planner, and Tourism Information Plan-
ner), the skeleton code of its business logic is generated to be then completed
by the developer. This is the construction logic for the messages sent by the
participant.

Figure 12 shows the code completed by the developer for building the message
getMobilityInfoResponse (see local variable result). The implemented logic
starts with the retrieval of the message tripsResponse sent by Journey Planner
within the task Get Trips Information (line 297). The content of this message
is used to set the trip information of getMobilityInfoResponse (line 298). Then
getMobilityInfoRequest sent by Tourist Agent is retrieved (lines 300-301).
Based on the transportation mean chosen by the user, which is contained in the
transportMode element of the message, different data can be used to construct
the response message getMobilityInfoResponse.

A Tutorial on Automated Synthesis of Choreography-based Systems 15

] MobilityinformationPlannerServicelmpl.java 52

2920 @Override

2293 public GetMobilityInfoResponse createGetMobilityInfoResponse(

@294 ChoreographyInstanceMessages choreographyInstanceMessages, String choreographyTaskName,

295 String receiverParticipantName) {

296 GetMobilityInfoResponse result = new GetMobilityInfoResponse();

297 Trip trip p = (Trip p) choreographyInstanceMessages

298 .getMessageSentFromParticipant("tripsResponse”, "Journey Planner", "Get Trips Information");
299 result.setTrip(tripsResponse);

300 GetMobilityInfoRequest getMobilityInfoRequest = (GetMobilityInfoRequest) choreographyInstanceMessages
301 .getMessageSentFromParticipant("GetMobilityInfoRequest", "Tourist Agent","Get Mobility Information");
302 if(getMobilityInfoRequest.getTransportMode().equals(Modes.CAR)) {

303 ParkingResponse parkingResponse = (ParkingResponse) choreographyInstanceMessages

304 .getMessageSentFromParticipant("parkingResponse"”, "Parking", "Get Parking Information");
305 result.getParkings().addAll(parkingResponse.getParkings());

306 TrafficResponse trafficResponse = (TrafficResponse) choreographyInstanceMessages

307 .getMessageSentFromParticipant("trafficResponse", "Traffic", "Get Traffic Information");
308 result.getTrafficInfos().addAll(trafficResponse.getTrafficInfos());

309 b

310 if(getMobilityInfoRequest.getTransportMode().equals(Modes.PUBLIC_TRANSPORT)) {

311 LatestPTResponse latestResponse = (LatestPTResponse) choreographyInstanceMessages

312 .getMessageSentFromParticipant("latestPTResponse", "Public Transportation",

313 "Get Public Transportation Info");

314 result.getPublicTransportInfo().addAll(latestResponse.getPublicTransportNews());

315 ¥

316 return result;

317 }

Fig. 12. Prosumer Business Logic implementation

Choreography Architecture Generation - Finally, considering the selected services
and the generated BCs, SFs, ADs, and CDs, an architectural description is
automatically generated in both a textual and a graphical form.

7 Conclusion

This paper has presented the CHOReVOLUTION IDRE, an integrated plat-
form for developing, deploying, executing and monitoring choreography-based
distributed applications.

In this tutorial paper, an industrial use case, in the Smart Mobility and
Tourism domain, has been used to show the CHOReVOLUTION IDRE at work.
The industrial partners that provided us with the use case have experienced with
its modeling and automatic development and enactment, by using the IDRE.
While interacting with the IDRE software development facilities and wizards
discussed in this paper, the involved industrial partners experienced a significant
time decrease with respect to realizing the use case by exploiting their daily de-
velopment approaches. Their feedbacks on that indicate that the CHOReVOLU-
TTION IDRE has a great potential in developing choreography-based applications
and the use case got a full benefit from it.

More pilots and development cases will allow to consolidate the technical
maturity of the product and pose the basis for a commercial validation.

Acknowledgments

Supported by: (i) EU H2020 Programme grant no. 644178 (CHOReVOLUTION
- Automated Synthesis of Dynamic and Secured Choreographies for the Fu-
ture Internet), (ii) the Ministry of Economy and Finance, Cipe resolution n.
135/2012 (INCIPICT), and (iii) the SISMA national PRIN project (contract
no. 201752ENYB).

16

M. Autili et al.

References

10.

11.

12.

13.

14.

Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies.
IEEE Software 32(1), 50-57 (Jan 2015)

. Autili, M., Inverardi, P., Perucci, A., Tivoli, M.: Synthesis of distributed and adapt-

able coordinators to enable choreography evolution. pp. 282-306. Lecture Notes in
Computer Science (SEfSAS) (2017)

Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Science of
Computer Programming 160, 3-29 (2018)

Autili, M., Ruscio, D.D.; Salle, A.D., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Fundamental Ap-
proaches to Software Engineering - 16th International Conference, FASE 2013,
Rome, Italy, March 16-24. pp. 37-52 (2013). https://doi.org/10.1007/978-3-642-
37057-14

Autili, M., Ruscio, D.D., Salle, A.D., Perucci, A.: Choreosynt: enforcing choreogra-
phy realizability in the future internet. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. pp. 723-726 (2014)

Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: Model-driven adaptation
of service choreographies. In: Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC 2018. pp. 1441-1450 (2018)

Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: On the model-driven
synthesis of evolvable service choreographies. In: 12th European Conference on
Software Architecture: Companion Proceedings, ECSA. pp. 20:1-20:6 (2018)
Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of the 20th International Conference on World Wide Web, WWW
2011, Hyderabad, India, March 28 - April 1, 2011. pp. 795-804 (2011).
https://doi.org/10.1145/1963405.1963516

Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 14, Vasteras, Sweden - September 15 - 19, 2014.
pp. 743-754 (2014). https://doi.org/10.1145/2642937.2643016

Basu, S., Bultan, T.: Automated choreography repair. In: Proc. 19th Int.
Conf. on Fundamental Approaches to Software Engineering. pp. 13-30 (2016).
https://doi.org/10.1007/978-3-662-49665-7_2

Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-
28. pp. 191-202 (2012). https://doi.org/10.1145/2103656.2103680

Bouloukakis, G.: Enabling Emergent Mobile Systems in the IoT: from Middleware-
layer Communication Interoperability to Associated QoS Analysis. Ph.D. thesis,
Inria Paris, France (2017)

Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the roman model. IEEE Data Eng. Bull. 31(3),
18-22 (2008)

Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Proc. 40th Symposium on Principles of Programming
Languages. pp. 263-274 (2013)

15.

16.

17.

18.

19.

20.

21.

22.

A Tutorial on Automated Synthesis of Choreography-based Systems 17

European Commission: Digital Agenda for Europe - Future Internet Re-
search and Experimentation (FIRE) initiative (2017), https://ec.europa.eu/
digital-single-market/en/future-internet-research-and-experimentation
GoBler, G., Salaiin, G.: Realizability of choreographies for services interacting asyn-
chronously. In: Formal Aspects of Component Software - 8th International Sympo-
sium, FACS 2011, Oslo, Norway, September 14-16, 2011, Revised Selected Papers.
pp. 151-167 (2011). https://doi.org/10.1007/978-3-642-35743-5_10

Giidemann, M., Poizat, P., Salaiin, G., Ye, L.: Verchor: A framework for the design
and verification of choreographies. IEEE Trans. Services Computing 9(4), 647-660
(2016)

Lanese, I., Montesi, F., Zavattaro, G.: The evolution of jolie: From orchestrations to
adaptable choreographies. In: Software, Services, and Systems. pp. 506-521 (2015)
Poizat, P., Salaiin, G.: Checking the realizability of BPMN 2.0 choreogra-
phies. In: Proceedings of the ACM Symposium on Applied Computing,
SAC 2012, Riva, Trento, Italy, March 26-30, 2012. pp. 1927-1934 (2012).
https://doi.org/10.1145/2245276.2232095

Salaiin, G.: Generation of service wrapper protocols from choreography specifi-
cations. In: Sixth IEEE International Conference on Software Engineering and
Formal Methods, SEFM 2008, Cape Town, South Africa, 10-14 November 2008.
pp. 313-322 (2008). https://doi.org/10.1109/SEFM.2008.42

Salaiin, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE Trans. Services Computing 5(3), 290-304 (2012)

Salle, A.D., Gallo, F., Perucci, A.: Towards adapting choreography-based service
compositions through enterprise integration patterns. In: Software Engineering and
Formal Methods - SEFM 2015 Collocated Workshops: ATSE, HOFM, MoKMaSD,
and VERY*SCART, York, UK, September 7-8, 2015. pp. 240252 (2015)

