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Abstract. International Revenue Sharing Fraud (IRSF) is the most persistent type
of fraud in the telco industry. Hackers try to gain access to an operator’s network in
order to make expensive unauthorized phone calls on behalf of someone else. This
results in massive phone bills that victims have to pay while number owners earn
the money. Current anti-fraud solutions enable the detection of IRSF afterwards
by detecting deviations in the overall caller’s expenses and block phone devices to
prevent attack escalation. These solutions suffer from two main drawbacks: (i) they
act only when financial damage is done and (ii) they offer no protection against
future attacks. In this paper, we demonstrate how unsupervised machine learning
can be used to discover fraudulent calls at the moment of their establishment,
thereby preventing IRSF from happening. Specifically, we investigate the use of
Isolation Forests for the detection of frauds before calls are initiated and compare
the results to an existing industrial post-mortem anti-fraud solution.

1 Introduction

International Revenue Sharing Fraud (also known as Toll fraud) is a multi-billion dollar
scheme [17] where fraudsters use telecommunications products or services without the
intent to pay. With Voice Over IP (VoIP) enabling devices to communicate over the
Internet, VoIP devices and services are a popular target for hackers to abuse. The result
is typically phone bills of thousands of euros [28] that victims have to pay. In practice,
network operators often covers these expenses either because they were responsible for the
vulnerability or they want to maintain customer satisfaction. To minimize this fraud, they
often install anti-fraud detection software to detect signs of fraud as quickly as possible.
Current anti-fraud solutions typically use pricing information and features such as call
duration to determine whether a call was fraudulent. Although such detection turns out to
be accurate [4], those features are only available after the call has been made. Since the
detection of a fraudulent call does not provide any information about the severity of the next
call, operators are often forced to shutdown the phone device or underlying VoIP server
(e.g., a Private Branch eXchange) until they are sure that the call was legitimate. The result
is that customers can no longer make (regular) phone calls until the fraud has been resolved.

The goal of this work is to explore to what extent fraud can be detected when a call is
established, compared to existing industrial (post-mortem) anti-fraud solutions. To this
end, we study how we can use unsupervised machine learning solutions and, in particular,



Isolation Forests [25] to determine the severity of a phone call using features that are only
available at the start of a call. In contrast to traditional anomaly detection algorithms (see
[8] for a survey), Isolation Forests enable the detection of anomalies without having to
construct profiles of normal behavior. This makes the algorithm particularly suitable for
highly dynamic environments where construction of normal profiles can be too resource
intensive. In addition, with linear time classification Isolation Forests have also shown
to be suitable for the analysis of large data streams [9]. However, in order for machine
learning solutions to be applied for fraud detection, the number of false alarms need to be
kept to a minimum. This typically requires properly tuning such solutions and underlying
parameters, which is a non-trivial task [16].

In this work, we perform a latitudinal study to assess the detection capabilities of
Isolation Forests in the context of IRSF detection and to study how different parameter
settings and feature spaces affect performance. Specifically, our main contributions are:

— the application of Isolation Forest anomaly detection for the early-stage detection of
IRSF;

— acase study of the approach demonstrating the effect of different parameter settings,
feature sets, and the use of derived features to improve detection rates;

— a comparison of the detection with respect to existing post-mortem analysis;

— a number of lessons learned on how to use Isolation Forests for the detection of
anomalies in multivariate data.

Our approach offers several benefits compared to existing anti-fraud solutions. In
particular, it enables network operators to detect signs of fraudulent calls before they are
established, providing operators the opportunity to block the call preemptively rather
than blocking a phone device entirely when the fraud has happened.

The remainder of the paper is structured as follows. The next section introduces
background on VoIP and related frauds. Section 3 discusses related work. Section 4
presents our methodology and Section 5 presents its experimental evaluation. Finally,
Section 6 discusses the results along with the limitations of the approach and Section 7
concludes the paper and provides directions for future work.

2 Background & Motivations

Voice over IP (VoIP) enables users to communicate audio and video over the Internet.
Compared to physical phone lines, the Internet provides a cheaper alternative and is
widely available. The VoIP infrastructure consists of four main types of components: VoIP
devices, Private Branch eXchanges (PBX’s), the Public Switched Telephony Network
(PSTN), i.e. the legacy phone infrastructure, and VoIP gateways. A VoIP device connects
over the Internet to a PBX operated by a network operator, which in turn connects to other
PBX’s. Over this network, a VoIP device is able to call other VoIP devices. VoIP gateways
connect the VoIP network to the PSTN to enable VoIP devices to call legacy phones.
Over the years, several vulnerabilities in VoIP and underpinning network protocols
have been discovered. Sahin et al. [32] define a taxonomy of VoIP fraud schemes in
which these schemes are categorized with respect to their root causes along with their



weaknesses and techniques to exploit them. Given that IRSF has been recognized as the
largest class of frauds in practice [17], in this work we focus on the detection of this class.

In IRSF an attacker breaks into the VoIP system of the victim and places numerous
calls to a premium phone number, i.e. a number that charges a fee in addition to the regular
cost of the call, which is owned by the attacker or a colluding entity. These calls are
charged to the victim and the revenue made from this call is shared amongst the attackers.
Blacklisting premium numbers is virtually impossible, due to them being ill-defined
internationally [32]. Therefore, network operators need methods for the detection of IRSF.
Ideally, these methods should be able to detect the fraud when the call is established to
prevent it from happening.

Real-time anomaly detection in telco industry, however, is challenging due to the
variety and volumes of data [12]. Depending on the type of users, the number of calls
can vary from tens to hundreds per month. In addition, data volumes are often too large
to analyze all network packets individually. As a result the use of profiling techniques
can be too computational intensive.

In order for anomaly detection to be effective in this field, the evaluation of a data
point needs to be reliable and efficient. False positives need to be kept to a minimum to
avoid operators from being overloaded with false alarms. In particular, the maximum
allowable false positive rate should be <2% [23]. The false negative ratio (i.e., the
number of missed fraud) is less critical here. We wish to catch as much fraud beforehand
as possible, but missed fraud cases could still be detected by a post-mortem detector. In
addition, some features such as the call duration and cost are only available after the call
has been made. Most data fields in VoIP calls consists of categorical features. In order to
enable real-time detection, the evaluation of a new data point and model updating must
be efficient [1].

In summary, in order to make the detection of IRSF during call establishment effective,
the anomaly detection method should meet several requirements. Specifically, a solution
for online IRSF detection should:

R1 Be resilient to ill-balanced label distribution (e.g., 99% normal and 1% fraud).
R2 Support the analysis of categorical features.

R3 Enable fast classification of (new) individual calls.

R4 Provide a computational efficient method for training the classification model.
RS Generate an operationally feasible number of false positives.

R6 Not rely on call features that are only available after the end of a call.

In the next sections we discuss to what extent existing solutions meet the requirements
and show how Isolation Forests can be used to solve the detection task.

3 Related Work

Fraud detection is an extensively studied field covering a wide variety of techniques [22].
We first give a broad overview on data analysis techniques used to detect IRSF, followed
by a detailed discussion on existing anti-fraud solutions that are based on the analysis
of Call Detail Record (CDR) logs. An evaluation of existing solutions with respect to the
requirements identified in Section 2 is given in Table 1. For a more detailed overview on
the use of anomaly detection techniques for the detection of telecom fraud, we refer to [19].



Table 1. Comparison of fraud detection techniques with respect to the requirements for online
IRSF detection, as formulated in Section 2. In the table, @ means “support”, © “partially support”,
O “no support”.
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Fraud Detection. Similar to intrusion detection [13], approaches for the detection of
(IRSF) fraud can be classified in two main categories, namely signature-based detection
and behavioral-based detection [5]. Signature-based detection uses fixed rules to identify
whether a call adheres to predefined patterns. For instance, a suddenly increase in a user’s
dial expenses compared to his average phone bill provides an indicator for IRSF. For more
details on the typical signatures used for fraud detection, we refer to [14]. Although the use
of signatures provides an effective approach to fraud detection, it is unable to discover new
patterns enabling the detection of IRSF when, for instance, the cost of the call is unknown.

These shortcomings are typically addressed by behavioral-based detection techniques.
These techniques focus on the (statistical) profiling of entities so that the regularity of
new data points can be determined according to a model of expectation derived from
historical data. This enables analysts to automatically derive models that are tailored
on a per profile basis. In case of IRSF detection, we can identify two main types of
behavioral-based techniques, namely offline and online [7, 36]. Offline behavioral-based
techniques (also referred to as post-mortem detection) stores incoming data and do the
analysis after all calls have been made. Online techniques (a.k.a. (near)-real time analysis)
perform the analysis the moment new data arrives (e.g., during call establishment).

Our work can be positioned as online behavioral-based method. In particular, we
investigate the possibilities of applying online anomaly detection at the start of a call,
enabling the early stage detection of IRSF. This is in contrast to current literature, which
mainly focuses on the offline analysis of calls by applying anomaly detection on Call
Detail Record (CDR) logs [29]. Next, we review those solutions.

CDR-based fraud analysis. A common approach in the telecommunication domain for
offline behavioral-based fraud detection is through the analysis of Call Detail Records
(CDR). For instance, Modani et al. [26] use decision trees and logistic regression to
predict the churn rate of companies in CDR records whereas Wiens et al. [37, 38] apply
statistical profiling on user call behavior to detect exploited FRITZ!Boxes in a network.
The use of anomaly detection techniques are also shown to be useful for the discovery of
unknown patterns in call records. For instance, Becker et al. [3] are one of the first to
use unsupervised learning on CDRs to discover cellphone usage patterns. CDRs have
also been used to discover relationships between criminals based on the assumption that
criminals interact with each other. Specifically, Kumar and colleagues propose a model
to construct a CDR database in which these relationships are captured [24].



Kiibler et al. [23] analyze toll fraud hindsight by clustering user behavior using
unsupervised learning techniques such as k-means clustering and EM mixture models
[2]. Instead of using cost-based features, they build user-profiles based on destination
number and duration of the call. Although this approach to discover behavioral patterns
through feature engineering is similar to ours, it requires the construction of user profiles
to determine the severity of a call. In addition, the clustering algorithms proposed in
[23] are too computational intensive to be used in online settings. Especially in dynamic
environments where users register and leave phone operators on a regular basis, building
“normal” profiles can be too resource intensive to be applied in practice. The advantage
of using Isolation Forests is that this technique does not require a normal baseline to
determine the severity of an anomaly, but aims to isolate “few and different” points from
the rest of the data [25].

In summary, current approaches for fraud detection are signature-based or rely on
an offline behavioral-based analysis of calls using CDR logs. The absence of offline
features such as cost and duration in online detection requires adaptation of existing fraud
detection techniques both in terms of the feature space to analyze as well as computational
requirements. Our work overcomes these limitations by using Isolation Forests.

4 Methodology

The goal of the methodology is to explore to what extent we are able to detect fraudulent
IRSF calls before they are established, giving operators the opportunity to block the call
and prevent the fraud from happening.

We enable online IRSF detection through a real-time analysis of the network traffic
from and to Private Branch eXchange servers to identify suspicious patterns in the
establishment of VoIP calls. The establishment of a VoIP call is achieved by means of a
handshake using the Session Initiation Protocol (SIP) [31]. This protocol contains call
meta-data similar to Call Detail Records such as call start time, source and destination
numbers, and user identifier. In addition, more advanced features can be derived such as
the country of origin or in/outside office hours (we refer to Section 5.4 for more details).
Since the analysis is done during call establishment, we assume that features such as call
duration, cost of a call and call end time are unavailable.

Our methodology for online detection of IRSF comprises three steps, as depicted at
the top of Figure 1:

1. From the VoIP data we extract the features to use for training of the isolation forest.

2. We generate an isolation forest from the training data, which assigns an anomaly
score to each call.

3. We classify all calls with an anomaly score lower than a given threshold as anomalies.
Anomalous records are marked as fraud while the other are marked as normal.

To validate experimental results, we use an industry post-mortem fraud detector as a
baseline. Validation comprises three steps:

5. After the call ended, a CDR record is created by the underpinning PBX server.
6. The industrial anti-fraud detector labels the call records either as fraud or normal.
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Fig. 1. At the start of a call the isolation forest is trained and anomaly scores are computed on the
data points. At the end of a call, the post-mortem anti-fraud detector evaluates the call after which
the labels of the isolation forest are compared to the existing solution.

7. The evaluation phase compares the labels from our approach with the ones given by
the industrial detector and generates a performance report.

In the remainder of the section, we first introduce Isolation Forests after which we
discuss the dataset used for our experiments.

4.1 Isolation Forests

Traditional anomaly detection techniques typically construct a profile of the data that is
considered “normal‘ and evaluate any new data point against that model [8]. Isolation
Forests use a different approach as it aims to separate anomalous data points in the
dataset without building a distribution or profile. Instead, data is sub-sampled in a tree
structure by evaluating data points on randomly chosen features and split on those
features. Specifically, if a node contains two or more records, it is split according to a
randomly chosen feature. This causes an anomalous data point to reside in their own leaf
node. This is also illustrated in Figure 2. The main idea is that similar data points require
more splits before they can be separated from one another while anomalies remain close
to the root. Since purely random splits can lead to poor decision trees, data points are
evaluated against a collection of generated trees to determine whether they are statistically
significantly different from the rest.

The anomaly score of a data point is based on its average depth in all isolation trees.
A high score indicates that many splits are required in order to separate a data point from
the rest and is therefore considered to be similar to other records. Similarly, if the score is
low, only few splits are required to separate the data point and, therefore, it is considered
different from the other data points. A user defined threshold is used to determine whether
a score is low or high, i.e. whether a data point should be considered anomalous.

In our work, we evaluate the following parameters for the generation of Isolation
Forests (illustrated in Figure 3):

— nrTrees represents the number of trees in the forest.

— sample_size represents the size of the sample set. The sample size determines the
number of records for the construction of a tree in the forest.

— max_depth represents the maximum depth for each isolation tree.
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points’ regularity. Anomalous data points have tion of a tree. The dot in red is anomalous with
their own leaf node. respect to the chosen threshold.

— threshold is a user-defined threshold that determines the average tree depth that
should be exceeded in order for a data point to be considered normal.

— feature_set represents the set of features used for the construction of the trees in
the forest.

Isolation Forests provide several advantages compared to other machine learning
techniques. Compared to black-box techniques such as neural networks, Isolation Forests
are transparent. By inspecting the different trees, a VoIP operator is able to provide an
explanation on why a data point was considered anomalous, thereby enabling means
to judge the quality of a model using domain knowledge. Adaptations of Isolation
Forests have been proposed to make them suitable for streaming data [33]. In contrast
to other unsupervised learning methods such as k-means and EM-Mixture models [2],
the construction of the forest is computationally efficient, since distances between data
points are not computed, but features and data splits for the trees are chosen randomly.
In addition, the classification of a new data point requires at most O(max_depth) steps
per tree and can be run in parallel for every tree in the forest. Compared to supervised
learning techniques such as decision tree classifiers and SVM, Isolation forest do not
require labels to identify anomalous data points.

4.2 Data characteristics

We performed a number of experiments to assess the effectiveness of Isolation Forests for
the online detection of IRSF. Our dataset consists of over 10.000 VoIP calls, out of which
the industrial anti-fraud solution marked 150 calls as fraudulent. The dataset consists
of nine Dutch users where a user can represent a physical person, a server, or an entire
phone operator. The data was recorded for a month by mirroring network traffic from a
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Fig. 4. Distribution of calls over the time of the day in our dataset.

Private Branch eXchange server of a Dutch VoIP provider. Each call is characterized by
the following online (i.e., pre-call) features:

— record_id is the identifier of the VoIP record.

— user_id is the identifier of the user that made the call.

— srcNr is an anonymized representation of the source number.

— srcCtry represents the country of call source.

— dstNr is an anonymized representation of the destination number.

— dstCtry represents the country of the call destination.

— disposition indicates whether the call was answered, canceled or busy.
— time is a timestamp indicating when call took place.

To test the suitability of Isolation Forests for the detection of IRSF in general, we
also collected the following offline (i.e., post-call) features:

— duration indicates how long the call lasted in seconds.
— billsec indicates the cost of the call per second.

We performed an analysis of the dataset to verify that it does not contain any artefacts
that could disqualify the experiments. For the sake of space, here we only report our
analysis with respect to features time and dstCtry. As shown in Figure 4, calls are
typically made during work hours whereas fraud cases mainly occur outside of work
hours. We can observe in Figure 5 that the destination of the calls is predominantly to
the Netherlands, but there is a wide variety of calls to different countries. The plot also
shows that simply blocking calls to certain countries is not a viable solution to fraud
prevention, as it would incorrectly block at least as much normal traffic.

S Experiments

This work aims to evaluate the effectiveness of Isolation Forests for the detection of IRSF.
In particular, we are interested in answering the following research questions:

Q1 Are Isolation Forests suitable for offline and online detection of IRSF ?
Q2 What is the effect of different parameter settings towards detection rates?
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Fig. 5. Distribution of calls over countries (expressed using ISO 3166-1 country codes) in our dataset.

Q3 What is the effect of different feature sets towards detection rates?
Q4 To what extent does the use of derived features improve detection rates?

Questions Q1 and Q2 validate whether Isolation Forests can be used in general for
IRSF detection. Q3 aims to determine which features in the input data should be taken
into account during classification. The naive usage of features such as time or categorical
features can significantly blow up the state space in which the algorithm needs to operate
and can lead to sub optimal results [10, 20]. Similar to Kiibler et al. [23], in Q4 we test
the effect of discretizing the time feature to see how this influences detection rates.

For the implementation of Isolation Forests we used the h2o framework (ver-
sion 3.26.0.10) [6]. This framework offers out-of-the-box support for categorical data
and is commonly used in academia to study machine learning techniques.

Settings. In our experiments, we tested different configurations for the generation of
Isolation Forests by varying the parameters presented in Section 4.1. An overview of the
parameters for each experiment is given in Table 2. It is worth noting that increasing
nrTrees does not influence the outcome of the model, since it is statistically unlikely to
generate significantly different anomaly scores when averaging over 100 trees given the
feature set of VoIP calls. Therefore, the recommended default settings for this parameter
is used, i.e. 100. In Experiments 1, 3, and 4 we set parameter sample_size to 256,
which we deem sufficiently large. This choice is further motivated by Experiment 2 in
which we varied this parameter to study its effect on detection rates.

The choice for parameters max_depth and threshold is based on two observations:
Isolation Forests are unable to classify anomalies from normal behaviour with a small
max_depth, e.g., < 5. On the other hand, a large max_depth (e.g., > 15) can result in
problematic overfitting, as mentioned in the original paper [25]. Simultaneously, the value
of threshold cannot exceed the max_depth value and, therefore, its domain is restricted.
Specifically, we varied threshold in the range [5,max_depth], with steps of 0.1.

Evaluation metrics. In general, the evaluation of an unsupervised learning algorithm
is a challenge due to the lack of labeled data or a proper baseline. Inspired by Wang et



Table 2. Summary of parameter settings used for the experiments described in Section 5.

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4

nrTrees 100 100 100 100

sample_size 256 64, 128,256,512 256 256

max_depth  [6,15] € N [6,15] € N [6,15] € N [6,15] € N

threshold [5,15] € R [5,15] € R [5,15] € R [5,15] € R
feature_set pre-call, post-call pre-call subsets of pre-call pre-call + derived features

al. [35] and Dudoit et al. [11], we measure the quality of the resulting model by means of
an external index using the labels of the existing anti-fraud solution as the baseline.

The most common evaluation metric to assess the performance of a machine learning
algorithm is the Receiver Operating Characteristics (ROC) curve [18]. In this curve
the true positive rates and false positive rates are plotted for an algorithm at various
thresholds (i.e., the Isolation Forest threshold parameter). In our application domain,
the goal is to have a curve where the true positive rate is high and false positive rate is
close to 0. The Area Under the Curve (AUC) is an indicator how well the algorithm can
discriminate between normal and fraudulent traffic. The AUC can vary between 0.0 and
1.0 and the larger the area, the better the performance.

5.1 Experiment 1: Effectiveness of Isolation Forests for IRSF detection

In this experiment, we assess whether the classification capabilities of Isolation Forests
are suited to fraud detection in VoIP. We test this by applying Isolation Forests to both an
online and an offline setting. Specifically, we conduct two tests: one using all data available
at the establishment of the call (e.g., pre-call features) and one also including post-call
features (cf. Section 4.2). Based on RS, we require that the false positive rate is less than
2%, while the true positive rate should be sufficient to outweigh operational costs.

The full construction of an isolation forest for the dataset is efficient and takes
approximately 1 second (R4). Figure 6 reports the ROC curves when using pre-call and
post-call features. The figure shows that, at a 2% false positive rate, the true positive rate
obtained using pre-call features is insufficient. However, in the post-mortem setting we
can detect up to 58% of all fraud cases. At a false positive rate of 5%, we can detect up
to 33% of all fraud cases in the pre-call setting, compared to 82% in the post-call setting.
The true and false positive rates for the post-call features are comparable to earlier work
by Kiibler [38] and shows that, with respect to requirements R1 and RS, Isolation Forests
have potential for the detection of IRSF. Enabling detection of IRSF using only pre-call
features, however, requires additional tuning in order to meet the requirements.

5.2 Experiment 2: Effect of parameter settings

This experiments is conducted to evaluate the effect of parameters max_depth and
sample_size on the detection capabilities of Isolation Forests. To this end, we first
computed the ROC curves for each value of max_depth while varying parameter
threshold with steps of 0.1 and fixing the sample_size parameter to 256. We also
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computed the ROC curves for each value of sample_size while keeping the max_depth
parameter fixed to log(sample_size) and varying the threshold with steps of 0.1. For
this experiment, we used pre-call features. Figure 7 reports the results of the experiment.

From the plot at the top of Figure 7, we can observe that, when max_depth is lower
than 7, the detection rate drops significantly. We believe this is twofold. First, if the
max_depth becomes smaller than the number of features, there is an increased risk of
missing crucial feature splits during the tree generation phase of the algorithm. Second, in
Section 4.1 we showed that anomalous data points occur alone in the leafs of an isolation
tree. With a max_depth of 6, at most 2° = 64 anomalous data points can be detected.
Given that the dataset includes over 100 cases marked as fraud, the size of the tree is
insufficient to assign every anomalous point to an empty leaf node. As a consequence, it
is more likely for two inherently different data points to end up in the same leaf node,
which leads to an overgeneralization of the resulting model.

A second observation is that increasing the max_depth does not significantly affect
performance. By default, Liu et al. [25] recommend max_depth = log,(sample_size)
to obtain a balanced tree. In our experiments this recommended value would correspond
to log,(256) = 8. The idea of increasing the depth would be to give the algorithm more
slack to add additional splits to better discriminate between normal and fraudulent points.
Results show, however, that for max_depth = 8 the number of splits is already sufficient
to identify the anomalies.

The plot at the bottom of Figure 7 shows that the increase of parameter sample_size
does not lead to any significant improvement of the performance. This illustrates
that taking a sample size of 256 is sufficiently large to obtain a data subset which is
representative for the generation of one tree.
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Fig.7. Comparison of ROC curves for fraud detection using pre-call features at the variations of
max_depth (top) and sample_size (bottom).

5.3 Experiment 3: Effect of different features

We conducted this experiment to investigate the impact of including certain features on
the effectiveness of Isolation Forests for fraud detection. We compare different sets of
features and measure the false positive and true positive rates. In particular, we consider
the following feature sets:
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Fig. 8. Comparison of ROC curves for fraud detection using different feature sets. Specifically,
the curve obtained using all pre-call features is compared to the curves obtained when either
disposition, time or user_id are removed.

1. Pre-call, no time: record_id, user_id, srcNr, srcCtry, dstNr, dstCtry,
disposition, which allows us to study the influence of the time of the call
on the detection rate.

2. Pre-call,nouser: record_id, srcNr, srcCtry, dstNr,dstCtry, time, disposition,
which allows us to study the influence of the user identity on the detection rate.

3. Pre-call, no disposition: record_id,user_id, srcNr, srcCtry, dstNr,dstCtry,
time, which allows us to study the effect of feature disposition on the detection
rate.

We use the pre-call ROC curve from Experiment 1 as the baseline for the comparison.
If a feature set performs as the pre-call feature set or better, then we conclude that
the feature set is effective and the removed feature is not relevant for fraud detection;
otherwise the feature set is not effective and the removed feature should be used for the
classification of calls.

Figure 8 shows the result of the experiment. The removal of feature disposition
has a slightly positive effect on the detection rate, as is the effect of removing user_id.
A possible explanation for this could be that both features are not heavily correlated with
fraud. Removing time has a negative effect on the detection rate, which coincides with
the observation in Section 4.2 that the time of the call is a key factor for fraud detection.
In the next experiment, we investigate how we can derive additional features from time.

5.4 Experiment 4: Effect of derived features

In this experiment we explore how to improve detection rates by deriving additional
features from the call’s start time field. We extract three kinds of features, namely:
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Fig. 9. Comparison of ROC curves for fraud detection using different discretization of feature time.
Specifically, the curve obtained using all pre-call features is compared to the curves obtained when
additionally to the pre-call features, features OfficeHours, HourOfDay or FocusHourOfDay are
included.

1. HourOfDay: 24 Categorical features where every feature corresponds to a one hour
interval (24 hours notation).

2. OfficeHours: A Boolean feature that indicates whether the call has happened between
09:00-17:00.

3. FocusHourOfDay: These features are similar to HoursOfDay but in this case only
the hours just before 09:00 and just after 17:00 are considered, specifically, in the
interval [5, 9] and [18, 22].

These features were introduced to exploit domain knowledge in the classification
of calls. From the analysis of the dataset in Section 4.2 we observed that most fraud
cases occurred outside office hours. We attempted to capture this information is several
different ways. Initially, we only tried to capture this in a Boolean feature representing the
office hour time-interval, i.e. 0OfficeHours. We stretched the idea of a Boolean feature
per time interval all the way to including such a feature for every hour of a day. Finally,
we focused this broad set of features to only including the time-intervals we know are
correlated with fraud.

We applied Isolation Forests to the aforementioned feature spaces and compared the
results to pre-call results in Figure 6. Specifically, in each experiment we consider the
pre-call data set and replace the time feature with one of the derived features. The time
feature is replaced to isolate the effect of including the derived features. The results are
given in Figure 9.

We can observe that the features HourOfDay and FocusHourOfDay significantly
improve the detection rates. In particular, with the latter we have a true positive rate of
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Fig. 10. Summary of the results. Specifically, the ROC curve for fraud detection using all pre-call
features is compared to the ROC curve obtained using the feature FocusHourOfDay.

over 45%, at a false positive rate of 2%, which is comparable to the results obtained
using post-call features. A possible explanation for this is that by increasing the number
of features drastically, the chance of an isolation forest splitting on time increases. Since
time is correlated with fraud, this could explain the performance increase.

6 Discussion and limitations

The experiments in Section 5 show that with careful choice of the parameters and feature
space tuning, Isolation Forests provide a reliable tool for fraud detection. Figure 10 shows
the false positive and true positive rates of Isolation Forests before and after the proposed
optimizations as described in Experiments 1, 2, 3, and 4. Here, we can observe that at least
45% of the fraud can be detected reliably using the pre-call feature set at the cost of a 2%
false positive rate and up to 87% at the cost of a 5% false positive rate. Given that the dam-
age of such phone calls can be in the order of thousands of euros per call [15, 21, 30, 34],
the discovery of a few fraudulent calls is already sufficient to cover operational expenses.

The introduction of time based derived features improves the detection and coincides
with the observation that most of the fraud cases happened outside office hours. Experi-
ment 2 has shown that decreasing max_depth does not yield a significant increase in
performance. This is desirable since it gives less branching possible and clusters tend to
become larger.

With respect to the requirements presented in Section 2, our evaluation shows that
Isolation Forests are resilient to ill-balanced label distribution (R1) while enabling the
support of categorical features with over 50 values per features (R2). Isolation Forests
have a linear time complexity with a low constant and a low memory requirement which



is ideal for high volume datasets (R3). Although the training of the forest was a matter of
seconds, a larger data sample is needed to test whether requirement R4 is fully satisfied.
Experiments have also shown that, considering only pre-call features (R6), we are able
to detect almost half of the fraud reliably (RS).

Isolation Forest do not limit itself to the analysis of features before call establishment,
but can also be used for post-mortem analysis on CDR records. In Experiment 1 we
showed that, for post-mortem detection, Isolation Forests shows promising results.
However, more future work is required to explore the boundaries of the technique. The
computation efficiency of the algorithm enables fast retraining of the model to avoid
phenomena such as concept drift [36].

Although Isolation Forests have shown promising results in this application, the
approach has some limitations. First, the construction of an isolation forest is done by
randomly choosing features and splitting on values. Depending on the domain, however,
certain splits might be more favorable than others. Currently, Isolation Forests do not allow
enforcing certain splits or influencing the order in which features should be considered.
One workaround would be to run the algorithm separately for every data subset of interest
(e.g., per user); however, this no longer enables the discovery of any overlapping patterns
between the subsets. Another workaround to enforce a data split would be to convert such
split into a set of features (like it was done for feature OfficeHours in Experiment 4).
This solves the problem only partially, since it is not possible to enforce the split at a
certain location in the tree. Another limitation of Isolation Forests is that, like other
unsupervised learning methods, this technique does not use labeled data in the training
phase; therefore, it cannot leverage this information to learn how to distinguish between
normal and fraudulent traffic.

7 Conclusions and Future Work

In this paper, we explored the boundaries of Isolation Forest for online detection of IRSF.
We have performed a number of experiments to assess the effectiveness of the approach
for both offline and online analysis of VoIP traffic and validated results against an existing
industrial fraud detector. The results in Figure 10 show that Isolation Forest can identify
up to 45% of IRSF traffic before the calls have been established. Since the proposed
approach makes no underlying assumptions on the data to analyze, it is general and flexible
enough to be applied in other domains such as uselogin analysis or clickstream analytics.

An interesting direction for future work is the study of other derived features, for
example based on the countries involved. We also plan to perform a performance analysis
of Isolation Forests on a larger-scale, e.g., with dozens of calls per second.
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