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Abstract. The emerging 5G network will bring a huge amount of net-
work traffic with big variations to optical transport networks. Software-
defined optical networks and network function virtualization contribute
to the vision for future programmable, disaggregated, and dynamic op-
tical networks. Future optical networks will be more dynamic in net-
work functions and network services, with high-frequency network re-
configurations. Optical connections will last shorter than that of the
static optical networks. It’s straightforward that Programmable opti-
cal hardware will require a reduced link margin to improve the hard-
ware utilization. To configure network dynamically, real-time network
abstractions are required for both current links and available-for-deploy
links. The former abstraction guarantees the established links not be
interfered by the newly established link while the latter abstraction pro-
vides information for intelligent network planning. In this talk, we use
machine-learning technologies to process the collected monitoring data
in a field-trial testbed to abstract performances of multiple optical chan-
nels. Based on the abstract information, a new channel can be estab-
lished with maximum performance and minimized interference on the
current signals. We demonstrated the dynamic network abstraction over
a 563.4-km field-trial testbed for 8 dynamic optical channels with 32
Gbaud Nyquist PM-16QAM signals. The work can be further extended
to support complex optical networks.

Keywords: Machine Learning · Network Abstraction · Low-Margin Net-
works.

1 Introduction

Optical networks have becoming the essential infrastructure for the future fifth
generation (5G) networks. 5G transport networks, including fronthaul, middle-
haul and backhual networks, rely on optical network infrastructure [19]. Optical
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and wireless converged network architecture was proposed to support operational
network and end-user services [20]. In addition, the emerging 5G applications,
such as augmented reality applications, require more interactions with comput-
ing resource that located either in the cloud or in the edge. Compared to the
previous mobile networks, an increased proportion of mobile traffic will be sent
to metro and core networks. The successful deployments of 5G networks require
lot of innovations to be made in optical networks. In 5G networks, a peak data
rate up to 20 Gbit/s is provided for per user [12], which is comparable to opti-
cal channel capacities in optical networks providing 100G Ethernet standard still
dominates the market [6]. Therefore, dynamic network traffic with big variations
in 5G networks need to be supported by a flexible and dynamic optical network.

On the other side, optical networks are continuously evolving to be more
flexible and dynamic. Software-defined optical networks (SDN) decouple the
control plane and data plane, allowing the independent developments of both
technologies [3]. Network function virtualization (NFV) brings flexibility of net-
work functions to be configured, migrated or terminated in optical networks.
End-to-end network service orchestration can deploy network services over mul-
tiple network domains [1, 22]. In the perspective of optical hardware, hardware-
programmable network functions have been developed to deliver node functions
in an on-demand way [14].

In dynamic optical networks, network services or connections will serve in a
short time and high-frequency network re-configurations will be expected in op-
tical networks. From the perspective of network operators or network controllers,
it is straightforward that optical networks should be planned at short timescales
rather than the end of life (EoL) of network facilities. Network margins part of
which were reserved for aging can be eliminated by considering the service life
period [17].

Dynamic optical networks with reduced network margins raise many chal-
lenges for network operations. One of the key challenges is that network con-
trollers need up-to-date information about dynamic networks to dynamic config-
ure optical networks with a reduced margin. Network abstraction that abstracts
information of network states assists network controllers to deploy services ac-
cording to the current network states. In addition, the abstract process needs
to evaluate the impact of the new established services or links on the previous
services or links. The latter abstraction function guarantees the established links
not be interfered by the newly established link. In margin-reduced networks, the
dynamic abstraction becomes more critical. Due to the fast-frequency network
re-configurations, the dynamic abstraction need to be continually updated after
each reconfiguration with a fast response time.

In optical networks, one of the key information regarding per link is the link
impairment, which is affected by operation parameters of network facility and
network configurations. Static network abstraction can be achieved by testing
link performance in advance [4]. However, the static network abstraction neglects
the dynamics in network payloads and other physical parameters. In margin-
reduced dynamic optical networks, it is of vital importance to abstract optical



Fig. 1. Field-trial demonstration over a 560-km link between Bristol and London.

network impairments dynamically. Therefore, time-consuming link optimization
can be eliminated to support high-frequency network reconfigurations.

In this paper, we explored machine-learning technologies to process the col-
lected optical performance monitoring data and operation data of the key equip-
ment in a field-trial testbed to dynamically abstract qualities of transmission
(QoTs) of multiple optical channels. For the first time, we developed machine-
learning (ML) based dynamic network abstraction using Random forest regres-
sion. The developed ML-based dynamic network abstraction is able to predict
the transmission quality, i.e., BERs of the un-established optical channels and
to evaluate the impact on the previously established channels. The ML-based
predictor can predict the link performance up to 8 channels simultaneously. The
evaluation of the current link is essential for a low-margin network. In the demon-
stration, a field-trial link between Bristol and London is setup with 24 optical
channels transmitting over 564 km. A network-scale cloud network configuration
and monitoring database (CMDB) is implemented over the field-trial link based
on [15], with extensions to include parameters of EDFA pump lasers, such as
pump laser current and temperature. The central 8- channel signals, generated
by eight real-time PM-16QAM transponders, are configured dynamically with
real-time BER (Bit Error Rate) measurements. Random forest regression based
network abstraction algorithm is developed to abstract all the eight channels by
the transmission performance. With 4324 training data sets, the developed net-



work abstraction algorithm can predict the performance of the un-established
channels based on the current network states. The algorithm can also evalu-
ate the impacts on the previous established channels. The experimental results
show the developed network abstraction algorithm could abstract network per-
formance with a high precision. The dynamic network abstraction can assist
network controller to deploy new services based on link performance while min-
imize the disturbance on current services. The work will be one of the potential
enabling technologies for a reliable margin-reduced network.

2 Literature review of network abstraction with machine
learning technologies

To abstract optical network impairments, multiple technologies have been ex-
plored. Gaussian-noise (GN) model has been developed extensively to provide
a relatively simple and sufficiently-reliable tool for performance predictions [9,
10]. Considering the complexity in dynamic optical networks, the complex cal-
culation in GN-model prohibits its deployment in practical networks for network
planning. Some simplified analytical models have been developed to reduce the
complexity in [2, 11]. Such analytical models could be used for general analy-
sis to support network design. Nokia bell labs also reported a similar system
design tool to facilitate the design of the terrestrial transmission systems with
high-order modulation formats and coherent detection technologies [7]. In [5],
an open source QoT estimator was developed with the capability to predict per-
formance with an accuracy of ±0.75db. This kind of analytical models can’t
provide precision predictions to reflect the impairments, especially the dynamic
impairments in optical networks. Therefore, these tools were mainly used at the
network design phase. In margin-reduced networks, more precise QoT estima-
tion with a short computation time is required. The QoT prediction needs to be
done for each operation.

Thanks to the advance of machine learning technologies, many researchers
started to explore network dynamics in optical networks with advanced machine
learning technologies. Artificial neural network based QoT prediction algorithms
have been developed to predict the performance of the un-established optical
channels [8, 13, 15]. Most of the previous works use network configurations, such
as modulation formats, link distance, fiber parameters, to predict the QoT of the
unestablished channels. In such case, the QoT-prediction actually neglects the
dynamics in optical devices, especially the active devices, whose operation pa-
rameters affect the transmission performance significantly. The developed QoT
prediction algorithm worked well in the collected data in a short time. However,
failure to handle dynamics in optical device will lead to inaccuracy of QoT esti-
mations in long term. In [15, 16, 21], we built a cloud network configuration and
optical performance monitoring database to collect the physical parameters over
the whole network. ANN-based QoT prediction was developed to predict a sin-
gle channel. Combining with network configurations, the developed ANN-based
QoT prediction algorithm is able to handle the dynamics in optical networks,



which could be reflected in the operation parameters in optical devices. In this
paper, we further developed the concept to dynamic optical network with mul-
tiple channels.

3 Field-trial demonstration of dynamic network
abstraction

Figure 1 shows experimental setup of the field-trial testbed. Total 24-channel
optical signals are generated with three sets of transmitters in our lab. Eight
external cavity lasers (ECLs) are combined together and then modulated with
a dual-polarization IQ modulator to generate 8 × 28 Gbaud PM-QPSK sig-
nals. The IQ modulator is driven by four 28 Gbaud electrical signals, which are
generated by a high-performance FPGA. In a similar way, another eight ECLs
are modulated by another IQ modulator driven by a 32 Gbaud pulse pattern
generator (PPG), to generate 32 Gbaud PM-QPSK signals. Another 8-channel
real-time Nyquist PM-16QAM signals are generated by two Facebook Voyager
transponders, which also provide BER measurements of per channels. The to-
tal 24 channel optical signals are multiplexed together by a 4 × 20 Wavelength
Selective Switches (WSSs). After auto equalization, the combined 24-channel
signal is launched to the 563.4-km fiber link between Bristol and London. The
optical spectrum of the 24-channel optical signal is shown in Fig. 2. In this paper,
the developed dynamic network abstraction will focus on the dynamic channels
as indicated in Fig. 2. The node controller and scenario generator controls the
three transmitter sets and WSSs. It can generate any combination with different
channel slot ”on”. By configuring the three transmitter sets, various network
scenarios with different channel distribution can be configured.

The used link which is part of the national dark fiber infrastructure (NDFIS)
includes five intermediate nodes. Each intermediate node includes EDFA, DCM
and a Polatis fiber switch to allow remote reconfiguration and monitoring of the
fibers and amplifiers. The fiber switch monitors the launch power of each span.
The operation parameters of the EDFAs are sent back to the cloud monitoring
database. The launch power for each span was estimated using incoherent GN
model. After transmission over the field-trial link, the signals are demultiplexed
by another 4 × 20 WSS. Then the BER measurements will be carried out for
each channel. The BER measurements of the 8-channel PM-16QAM signals are
also collected and sent to the cloud monitoring database.

3.1 Cloud Monitoring Database

To dynamic configure a margin-reduced network, network controller requires up-
to-date network state information. In addition to the dynamic network payloads
(spectrum allocations), operation states of the key infrastructure in the link can
provide in-depth information to abstract link impairments. The EDFAs in the
link contribute to the most OSNR penalties. On the other hand, optical powers



Fig. 2. Optical Spectrum of the 24-channel optical signal. The dynamic abstraction
focuses on the 8×32 Gbaud PM-16QAM signals.

play a significant role for nonlinear effects, which limit the maximum trans-
mission distance. Thus, a cloud monitoring database (CMDB) is implemented
to collect network configuration information, operation information of key in-
frastructure, and the quality of transmission per links. The database creates the
relationship between network configurations and the corresponding transmission
performance. The design of the cloud monitoring database enables reusing of the
local monitoring data. The separation of database from the SDN controller al-
lows the possibility to deploy high-performance computing resource to analysis
collected data and implement powerful machine-learning algorithms to serve the
SDN controller as a network abstraction service.

The proposed CMDB is implemented over the field-trial testbed as shown
in Fig. 1. The CMDB collects network configuration information from the SDN
controller, such as channel configurations, wavelength, modulations, link lengths.
The optical link monitoring information in the CMDB includes optical launch
power monitored at each span, operation parameters of all EDFAs, and optical
spectrum information at the transmitters and receivers. Regarding EDFAs, the
CMDB collects operation information from each EDFA, include temperature



and bias of the pump laser, optical power of the input and output ports, and
the noise figure.

3.2 Machine learning based network abstraction

Fig. 3. Structure of BER prediction algorithm based on random forest regression.

Considering that the data contains a lot of features, Random Forest Re-
gression is chosen as a Machine Learning algorithm to predict link performance
and evaluate the impact on the current channels. Random Forest is one of the
most effective ensemble learning algorithms, which includes N random decision
Trees. Its final prediction result is combined from a set of base models, which
improve its performance compared with a single model[18]. Furthermore, it han-
dles thousands of features efficiently and runs on big data bases. Figure 3 shows
the structure of BER prediction algorithm based on monitoring data from the
CMDB. Monitoring data include three parts: network configuration informa-
tion, optical link monitoring information and the BER measurements from the
8-channel real-time transponders. In order to improve the accuracy of prediction,
the interrelationship of established channels is characterized by One-Hot coding.

In order to generalize the network state, the node controller and scenario
generator as shown in Fig. 1 configures the transmitter sets to generate different
scenarios of the 8 dynamic channels. We collected 4324 data to train the model.
Each data include information about the transmitters, optical links, and receiver-
side BER measurements.



3.3 Results of dynamic network abstraction

Fig. 4. Predicted BERs vs. Real BERs for all the available channel slots in the chosed
scenario.

To verify proposed network abstraction algorithm, one scenario with only
channel 2 ”on” is considered. To deploy new link, the network abstraction algo-
rithm will predict the BER performance of all the available channel slots and
evaluate the corresponding impact on the Channel 2. Figure 4 shows the com-
parison of the predicted and actual BERs for un-established channel when only
channel 2 is established. The developed network abstraction algorithm predicted
the BER of all the available channels (Channel 1,3,4,5,6,7,8). As show in the
Fig. 4, the implemented network abstraction algorithm predicted the link BERs
of the un-established channel with a high precision. The maximum error occurs
at Channel 5. The different performances for channel 5 and other channels con-
tribute to the difference. The predicted performance for all the available channel
slots can help network controller to deploy optical links intelligently. In the fu-
ture work, the transmitter performance will be also included in the prediction
model.

In the margin-reduced dynamic network, another challenge is to ensure the
established channels not to be disturbed by the new deploy channels. Therefore,
in the phase of network planning, the proposed network abstraction algorithm
can evaluate the impact of the establishing links on the current channels. The



evaluation will prohibit the failure of current channels. In the same scenario, the
network abstraction algorithm predicts BERs of the channel 2 when the new
established channel is deployed in the available channl slots, such as Channel 1,
3, 4, 5, 6, 7, 8. Figure 5 shows the comparison of predicted BERs and the actual
BER for existed channel 2 when channel 1,3,4,5,6,7,8 is switched on respectively.
We can see the prediction is very accurate, and the performance of existed optical
path almost remains unchanged as the experiment platform is very stable. By
adding another channel, the impact on the current channel is very limited.

Fig. 5. Evaluation of the impacts on the current link by choosing different wavelength
slots to establish a new link. The channel number is the choosed wavelength slot. The
corresponding BER is the predicted BER performance of the previous link when the
new link is established.

3.4 Scalabilities of the cloud monitoring database and
Machine-learning based QoT predictor

In this paper, we extended the previous work to dynamically abstract the QoTs
of multiple channels. The experimental demonstration shows the ML-based QoT
prediction can help the SDN controller plan the network efficiently, i.e., to max-
imize the link capacity by reducing link margins with precise QoT predictions
and minimize the interference on the current established channels. The QoT



prediction relies on the collected massive network operation data from both the
SDN controller and the optical performance monitoring. In current demonstra-
tion, the OSNR penalties of the multiple paths connected several optical nodes
can be predicted with the implemented cloud monitoring database. To deploy
the ML-based QoT predictor in the future optical networks, scalabilities of both
cloud monitoring database and the ML-based QoT predictor need to be consid-
ered.

Regarding the cloud monitoring database, i.e.,NCMDB, each physical trans-
mitter is used with the event time together to generate the record ID. All the
other information is linked to the record ID. In such approach, the whole network
activities can be recorded and linked to each transmitter. Therefore, the scale
of the NCMDB depends on the deployed transmitters in the link. Especially in
core networks, there are limited numbers of nodes and links. The NCMDB can
be easily scaled up to store more network information. The centralized monitor-
ing data hub collects the monitoring information through dedicated links. The
dedicated link could provide enough bandwidth to allow the NCMDB to collect
raw data. Therefore, the data can be re-used by multiple network analytic ap-
plications. The network analytic applications that run on top of the NCMDB
also provides an interface for the SDN controller to access the processed mon-
itoring information. Therefore, the developed network abstraction application
is deployed as a service. In such way, the centralized network information hub
simplifies the work-flow of SDN controller to use the monitoring information.
The design of the NCMDB provides good scalability for future big networks.

As far as the scalability of the ML-based QoT prediction technique is con-
cerned, an increase in network size will definitely result in an increase in the
number of links parameters (e.g. number of EDFAs’ parameters) which are in
fact used by our ML model for OSNR monitoring. This implies that the com-
putational resources/time required for the training of ML will also increase sig-
nificantly in this case. However, we would like to emphasize that the training
procedure of ML model is conducted completely offline and prior to actual de-
ployment in an SDN. Once the parameters of an ML are optimized offline, the
actual OSNR monitoring process in SDNs employing trained ML model involves
few simple matrix multiplications. Therefore, we believe that the computational
complexity and processing time will keep at a low level and possible provide
real-time network abstractions.

4 Conclusion

In this paper, random forest regression based network impairment abstraction
algorithm is developed to analyze the implemented cloud monitoring and con-
figuration database (CMDB). The network abstraction algorithm predicts the
performance of all the available channel slots and also evaluate the impact on the
current links when any available slot is selected to deploy new links. We demon-
strated the network impairment abstraction up to 8-channels over a 564-km
field-trial link . The implemented algorithm could predict the channel perfor-



mance with a high precision to support margin-reduced optical network. The
dynamic network abstraction could be integrated with the SDN controller to
achieve low-margin dynamic optical networks. The introduced CMDB and the
network analytic applications open new possibilities for future dynamic optical
networks.
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