
HAL Id: hal-03143269
https://hal.science/hal-03143269

Submitted on 16 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Promise Plus: Flexible Synchronization for Parallel
Computations on Arrays

Amaury Maillé, Ludovic Henrio, Matthieu Moy

To cite this version:
Amaury Maillé, Ludovic Henrio, Matthieu Moy. Promise Plus: Flexible Synchronization for Parallel
Computations on Arrays. FSEN 2021 - 9th IPM International Conference on Fundamentals of Software
Engineering, May 2021, Tehran, Iran. pp.1-7, �10.1007/978-3-030-89247-0_13�. �hal-03143269�

https://hal.science/hal-03143269
https://hal.archives-ouvertes.fr


Promise Plus: Flexible Synchronization for

Parallel Computations on Arrays

Amaury Maillé1, Ludovic Henrio1, and Matthieu Moy1[0000−0002−6054−8882]

Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.
first.last@ens-lyon.fr

Abstract. Parallel applications make use of parallelism where work is
shared between tasks; often, tasks need to exchange data stored in arrays
and synchronize depending on the availability of these data. Fine-grained
synchronizations, e.g. one synchronization for each element in the array,
may lead to too many synchronizations while coarse-grained synchro-
nizations, e.g. a single synchronization for the whole array, may prevent
parallelism. We propose PromisePlus, a synchronization tool allowing
tasks to synchronize on chunks of arrays with a granularity con�gurable
by the programmer.

Keywords: Promises · Programming Models · Parallel Programming · High-
Performance Computing

1 Introduction

In parallel programming, a promise is a synchronization tool. Initially, a promise
is unresolved. Then, one task produces a value that resolves the promise; another
task consumes that value through a get operation on the promise. get blocks if
the promise is still unresolved. When exchanging arrays between tasks, promises
can be used in two ways: either as a promise of array, where a promise holds a
whole array; or as an array of promises, where there are as many promises as
there are elements in the array.

The contribution of this paper is a synchronization tool “PromisePlus” that
works as a trade-off between an array of promises and a promise of array. It
allows programmers to specify the granularity of synchronization and to stream
data between tasks. Unlike usual streaming frameworks [9] which are typically im-
plemented using FIFOs [6] with support for bulk insertion and removal, Promise-
Plus allows access to elements out-of-order without removing them from its in-
ternal buffer, allowing several consumer entities to access the buffer’s elements.
Specifying a fine-grained (resp. coarse-grained) granularity makes PromisePlus
akin to an array of promises (resp. a promise of array), and yields similar re-
sults in terms of performance. Moreover, there is a guarantee that a request to
an element of the PromisePlus will unblock after at most n values have been
produced, where n is the granularity of the synchronization. Finally, a request
to an element of the PromisePlus will never produce an undefined value.



2 Amaury Maillé, Ludovic Henrio, and Matthieu Moy

We begin this article with some context on HPC kernels and how they could
benefit from data streaming and fine-tuned synchronizations. We subsequently
present PromisePlus, benchmarks, related and future work, before concluding.

2 Context

HPC applications often perform heavy operations on huge amount of data stored
in arrays. A kernel is a function applied to an array that typically produces an-
other array as a result (e.g. map). Streaming data between kernels allows one
kernel to start working on a partial output of another kernel; this is achieved by
adding synchronization points between the two kernels. In order for the stream-
ing to be efficient, the synchronization needs to be smart, i.e. synchronizations
must be performed at the right points to fully exploit parallelism without wasting
too much time in synchronizations.

Parallelism in HPC application usually comes from frameworks such as MPI
(processes) or OpenMP (threads). These frameworks provide building blocks
to perform streaming, which requires programmers to either write smart syn-
chronization patterns on top of OpenMP/MPI or rely on third-party libraries
(e.g. [9]) to achieve streaming. Moreover, primitives from HPC frameworks are
low level, not always easy to use, and do not necessarily provide safety guarantees
by construction.

As stated above, efficient streaming requires smart synchronization patterns.
Ideally, these patterns should be reusable in different contexts (OpenMP threads,
MPI processes) with different parameters (e.g. the granularity of the synchro-
nization). Moreover, they should make the relation between data dependencies
and the synchronization explicit, in order for a programmer to understand the
concurrency problem solved. Finally, they should be optimized for the under-
lying architecture, thoroughly tested. Writing such a synchronization pattern
takes time, time that programmers may not always have, forcing them to write
patterns well suited for the problem at hand, but that cannot be reused as-is
elsewhere and that may not always be comprehensible to outside observers.

This motivates us to propose a new synchronization tool for streaming arrays
between tasks, that meets the following criteria:

– It makes the data dependency explicit: the programmer explicitly writes
which data is shared between threads;

– It is configurable in a way that allows programmers to specify the granularity
of the synchronization;

– It is not tied to a specific problem or a specific setup, and so is reusable;
– When the granularity is configured to the minimum (resp. maximum) value,

it behaves like an array of promises (resp. a promise of array), providing
the same guarantees and similar performance; moreover, every request for
the i-th value of an array unblocks after an amount of values equals to the
granularity has been produced;

– Contrarily to classical streaming solutions it supports the existence of several
consumers for the same data, and the access to produced data in any order.



PromisePlus: Flexible Synchronization 3

3 PromisePlus: Flexible Synchronization for Arrays

We present PromisePlus: a flexible synchronization pattern for arrays and ma-
trices that allows data streaming between tasks.

A PromisePlus works like a standard promise, with additional support for
integral indices. Both get and set work on indices; the programmer associates a
value to an index through set, and gets access to the value associated with an
index through get. Unlike an array of promises, performing a get on a given index
may not immediately return once the index has received a value. PromisePlus
is tied to two integral values: the step referred to as S that is configured at
instanciation-time the PromisePlus, and last. last is the index passed to the last
set call that triggered an unblock, initialized to −1 meaning the whole array is
unresolved.

During a call to set with index i, if i− last ≥ S, last becomes i and all calls
to get with an index i′ ≤ i are unblocked. This construct ensures that at most S
elements have to be produced to unblock a get. Changing the value of S changes
the granularity of synchronization.

Finally, a set_immediate primitive triggers an immediate synchronization,
unblocking the synchronization on all previous elements of the array.
API PromisePlus exposes three functions: set, get, and set_immediate. Index is
the type used for indices, T is the type of the values stored in the PromisePlus.
A call to set(i, v) associates value v with index i, and if i − last ≥ S, last
becomes i. A call to get(i) blocks until last ≥ i; then it returns the value
associated with index i. A call to set_immediate(i, v) associates value v with
index i. The value of last becomes i without checking the step S. This function
is particularly useful to signal that the last element has been produced and no
further set operation should be expected. Calls to set and/or set_immediate

must be performed on consecutive indices.
Notes on Implementation. While blocking a consumer thread in a get(i), we use
busy waiting as passive waiting induces too much overhead for HPC applications.
All threads must share reading access to the value of last while the producer
thread can write it too. Enforcing that all threads see an up-to-date value when
reading last is cost-heavy, therefore each thread has a local index that caches
the value of last. This local index is updated with the value of last when it is
not sufficient to unblock a call to get(i). In such a case, the thread synchronizes
on the shared index. Finally, the producer threads stores a local copy of last to
avoid some cost-heavy reads. Annex A presents algorithms for get and set.

4 Benchmarks

We benchmarked two things: how PromisePlus compares to the two naive ap-
proaches “array of promises” and “promise of array”, and how the average time
required to solve a problem using PromisePlus changes as the step changes.

Chosen problem Our problem is inspired by the LU program in the NPB [5], it
reproduces the same data dependencies. Given a 4D matrix, we run a function f



4 Amaury Maillé, Ludovic Henrio, and Matthieu Moy

on every element of the matrix, excluding boundary values, in parallel through
several OpenMP threads. In order to update certain values, thread Tn, n > 0,
requires values computed by thread Tn−1.
Matrix shapes We consider a work matrix of two billion values, excluding bound-
ary values. We consider three different shapes for this matrix, leading to three
different amounts of synchronization, while keeping the amount of computation
constant: 101 ∗ 161 ∗ 62501 ∗ 2 (62500 synchronizations), 101 ∗ 126 ∗ 80001 ∗ 2
(80000 synchronizations) and 101 ∗ 101 ∗ 100001 ∗ 2 (100000 synchronizations).
Environment These tests were performed on a machine equipped with four In-
tel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz, with 96 threads without hyper-
threading. Applications were built using GCC 8.3, C++17, and the −O2 flag in
Release mode.

Comparison of patterns We compare the performance of the different patterns:
array of promises, promise of array, and PromisePlus with three steps: 1, max
that only synchronizes upon a set_immediate, and opt that is the step that
achieves the best performance for a given shape. The promise of array uses
home-made promises, with a get operation that performs a busy wait. The array
of promises is tested using these same home-made promises, as well as C++
promises[8].

Figure 1 shows the results. In the legend, “P[Arr]” designates the promise of
array, “Arr[P]” designates the array of promises, “Arr[SP]” designates the array
of promises using C++ promises and “P+X” designates PromisePlus with a step
of X. Figure 2 show the performance of PromisePlus as the step grows.

As expected, PromisePlus with a step of 1 performs similarly to the array
of home-made promises with a slight overhead. Similarly, PromisePlus with a
maximum step performs like the promise of array, again with a slight overhead.
Both overheads are due to additional checks performed in the function set for
PromisePlus. Also, there is an optimum step for PromisePlus that performs
better than all others, with a performance gain of up to 12.63 % reached in
the second shape with a step of 82 compared to array of home-made promises.
Finally, home-made promises are well optimized: they perform up to 45.58 %
better than C++ promises (Arr[P] compared to Arr[SP]).

Regarding the evolution of the average time as the step grows, an optimum
step exists at which PromisePlus performs better than both the array of promise
and promise of array.

5 Related Work

Streaming futures. In [1], promises are used as a way to stream data: they can
be resolved multiple times, and each get returns the next resolving value when
available. Unlike PromisePlus, streaming futures work as FIFOs with support
for multiple producers at the cost of performance, and allow theoretically infinite
streams . In PromisePlus, we chose to focus on performance and flexible granu-
larity of synchronization for a better applicability to HPC. This flexibility could
be ported to streaming futures, and potentially improve their performance.



PromisePlus: Flexible Synchronization 5

Fig. 1. Execution time for each pattern
on di�erent matrix shapes

Fig. 2. Execution time for di�erent ma-
trix shapes and di�erent steps

Distributed futures. Distributed futures [7] provide efficient data transfer when
coupling data-parallel kernels in a task-parallel way. Spawning a task creates
a distributed entity that works as a future that can be partially resolved by
each process of the data-parallel computation. Once the result is computed, any
process may request any chunk of the data directly from the process that holds
it. Like PromisePlus, distributed futures slice the data and grants access to any
computed slice, however unlike PromisePlus distributed futures require the whole
computation to be over before allowing access to slices, preventing streaming.
The fact that we have a less strict synchronization allows us to perform more
optimizations and to find the optimal synchronization granularity.

OpenStream. OpenStream [9] is an extension of OpenMP that adds stream-like
faculties to tasks. An OpenStream task may produce one or more streams, and
a task may consume elements from one or more streams. A task is launched
only when the elements requested on each input stream are available, this adds
scheduling dependencies between tasks. A task requesting N elements from a
stream before being able to be launched is akin to a PromisePlus with step N .

WeakRB. WeakRB [6] is an efficient implementation of a FIFO queue, using
atomics in C, with a proof of correction.

The key differences between streams/FIFO queues and PromisePlus are the
destructiveness of streams, which can be read only once and in a predefined order,
and support only a single consumer in WeakRB. On the contrary, PromisePlus
enforces an interaction pattern inherited from promises, where values can be read
multiple times once they are ready, in any order, and by multiple consumers.

Message sets & Join patterns Message sets[3] and join patterns[4] allow for a
declarative way of defining synchronizations. Operations wait for messages sent
by other operations before executing. This is similar to get and set in Promise-
Plus. The key difference is that PromisePlus was thought first and foremost for
efficiency with a conditional jump and a store at worse, while join patterns and
message sets typically wait passively for a message.



6 Amaury Maillé, Ludovic Henrio, and Matthieu Moy

SkePU SkePU[2] is a framework for algorithmic skeletons. Internally SkePU
performs agressive optimizations to reduce the amount of synchronizations inside
a thread, and could benefit from an optimized tool like PromisePlus to perform
synchronizations between threads.

6 Future Work & Conclusion

In this paper we presented PromisePlus, an abstraction over promises that al-
lows parallel computations to synchronize on slices of arrays with a granularity
chosen by the programmer. This allows them to express different synchroniza-
tion patterns through the use of a single tool. Moreover, PromisePlus is not tied
to a specific framework, and as such can be used in multiple contexts. Promise-
Plus also features performance improvements without requiring programmers to
extensively refactor their code. Finally, PromisePlus offers the same guarantee
as classic promises: a call to get never produces an undefined value.

In the future we want to design static or dynamic analyses to optimize the
granularity of the synchronization, allowing the programmer to focus only on
where to put the synchronization points in their program.

References

1. Azadbakht, K., Boer, F., Bezirgiannis, N., Vink, E.: A formal actor-based model
for streaming the future. Science of Computer Programming 186, 102341 (12 2019).
https://doi.org/10.1016/j.scico.2019.102341

2. Enmyren, J., Kessler, C.: Skepu: A multi-backend skeleton programming library for
multi-gpu systems. pp. 5�14 (09 2010). https://doi.org/10.1145/1863482.1863487

3. Frølund, S., Agha, G.: Abstracting interactions based on message sets. In: Ciancar-
ini, P., Nierstrasz, O., Yonezawa, A. (eds.) Object-Based Models and Languages for
Concurrent Systems. pp. 107�124. Springer Berlin Heidelberg, Berlin, Heidelberg
(1995)

4. Haller, P., Van Cutsem, T.: Implementing joins using extensible pattern matching.
In: Lea, D., Zavattaro, G. (eds.) Coordination Models and Languages. pp. 135�152.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

5. Jin, H., Van der Wijngaart, R.F.: Performance characteristics of the multi-zone nas
parallel benchmarks. Journal of Parallel and Distributed Computing 66(5), 674 �
685 (2006). https://doi.org/https://doi.org/10.1016/j.jpdc.2005.06.016, iPDPS '04
Special Issue

6. Le, N., Guatto, A., Cohen, A., Pop, A.: Correct and e�cient bounded �fo queues.
pp. 144�151 (09 2013). https://doi.org/10.1109/SBAC-PAD.2013.8

7. Leca, P., Suijlen, W., Henrio, L., Baude, F.: Distributed futures for ef-
�cient data transfer between parallel processes. pp. 1344�1347 (03 2020).
https://doi.org/10.1145/3341105.3374104

8. Liskov, B., Shrira, L.: Promises: Linguistic support for e�cient asynchronous pro-
cedure calls in distributed systems. SIGPLAN Not. 23(7), 260�267 (Jun 1988).
https://doi.org/10.1145/960116.54016

9. Pop, A., Cohen, A.: Openstream: Expressiveness and data-�ow compilation of
openmp streaming programs. ACM Trans. Archit. Code Optim. 9(4) (Jan 2013).
https://doi.org/10.1145/2400682.2400712

https://doi.org/10.1016/j.scico.2019.102341
https://doi.org/10.1145/1863482.1863487
https://doi.org/https://doi.org/10.1016/j.jpdc.2005.06.016
https://doi.org/10.1109/SBAC-PAD.2013.8
https://doi.org/10.1145/3341105.3374104
https://doi.org/10.1145/960116.54016
https://doi.org/10.1145/2400682.2400712


PromisePlus: Flexible Synchronization 7

A Algorithms of get and set

In this annex we present algorithms for the get function of PromisePlus in Al-
gorithm 1, and for the set function of PromisePlus in Algorithm 2.

Algorithm 1 Algorithm of get

1: function get(index) . Get value associated with index
2: while index > local_index do . The local index avoids a cost-heavy read of

last if it is greater than the requested index
3: local_index ← last
4: end while

5: return value associated with index
6: end function

Algorithm 2 Algorithm of set

1: procedure set(index, value) . Associate value with index. If enough calls have
been made, unblock calls to get with a lower index

Require: index is the next integer compared to the last call to set

2: if (index - local_last) ≥ step then . Reading from a local copy of last in the
producer thread avoids cost heavy accesses to last

3: last ← index . Unblock get(i), i < index

4: local_last ← index
5: end if

6: Associate value with index
7: end procedure


	Promise Plus: Flexible Synchronization for Parallel Computations on Arrays

