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Abstract. The Talent Scheduling problem (TS) is a practical problem
entailed by devising a schedule for shooting a film, which is a typical
constraint optimization problem. The current modeling approaches are
limited and not efficient enough. We present a more concise and efficient
modeling approach for the problem. Besides, we exploit TS as a case
study to explore how to utilize parallel constraint solving to speedup
this constraint optimization problem.

Keywords: Scheduling · Constraint programming · Parallel constraint
solving · The Talent scheduling problem

1 Introduction

The talent scheduling problem (TS) is a NP-hard problem originally presented
in [1], and it is problem No.039 in CSPLib [2]. The problem can be described as
follows: the process of making a film is partitioned into n individual pieces, each
of which may require a different subset of the resources such as actors, props and
costumes, etc., which can be viewed as a set whose members are m independent
resources. Besides, the duration of pieces varies according to the requirement
of the film shoot; the cost of different resources is paid at different rates. For
a given piece, the cost incurred by one resource is equal to the product of the
duration of the piece and the cost of the resource. A feasible solution of a TS
problem can be represented as a table (cf. Table 1), in which each column stands
for a fixed set of resources required by a piece, while each row represents the
demand for the resource for all the pieces of the film. One feasible solution of the
TS problem differs from another only because of their different permutations of
pieces (columns). By contrast, the order of resources (rows) can always be fixed.
A cell of a feasible solution is assigned to one if the resource is required by
the piece, otherwise zero. For example, in Table 1, piece 4 requires resource
1 and does not require resource 2; hence, the corresponding cells are 1 and 0
respectively.

The cost of a resource only depends on the interval between the first piece
in which it is involved and the last piece in which it is involved, which implies
that the idle times of the resource in the interval also need to be paid. In the
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Piece 4 1 11 10 13 12 3 2 6 8 7 9 5 20 15 14 17 18 16 19 Cost/100
resource 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10
resource 2 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 4
resource 3 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 5
resource 4 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
resource 5 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 5
resource 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 40
resource 7 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 4
resource 8 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 20
Duration 1 2 1 2 2 1 1 1 3 1 1 1 1 1 2 1 1 2 1 1

Table 1. A feasible solution for a given TS in [3]. The Cost and Duration in the last
column and the last row stands for the cost per time unit and the duration of the
pieces, respectively. The overall cost of this solution is 14,600.

presented paper, if a resource lies idle in such an interval, we call it idle resource.
For instance, resource 1 required from piece 4 to piece 8 lies idle for pieces 13
and 12 in the feasible solution shown in Table 1. In this case, resource 1 still
needs to be paid due to pieces 13 and 12. Thus, the additional expense incurred
by resource 1 is calculated by 10 ∗ 2 + 10 ∗ 1, where 10 is the cost of resource 1,
and 2 and 1 are the durations of pieces 13 and 12 respectively. The objective of
the TS problem is to find a feasible solution that has the lowest cost incurred by
all the idle resources of the feasible solution. Given the above, the TS problem
is a typical constraint optimization problem (CSOP).

Consider the making process of a film composed of n pieces and m kinds of
resources, dj (j ∈ {1..n}) denotes the duration for piece j, while ci (i ∈ {1..m})
denotes the costs of resource i. Besides, we define a function τ(i, j) as follows:

τ(i, j) = 1− T (i, j) (1)

where T (i, j) denotes the value in row i and column j of the given feasible
solution, and the domain of j is over the interval between the first occurrence
of one (fi) and the last occurrence of one (li) in row i. Therefore, the total cost
function for all the idle resources in a feasible solution t is:

cost(t) =

m∑
i=1

li∑
j=fi

τ(i, j) · dj · ci (2)

where t determines fi, li, and τ(i, j). Therefore, the objective of the TS problem
can be stated as finding a feasible solution which has the minimum value of the
cost function, which is given by:

Minimize
t∈T

cost(t) (3)

where T is the total solution space of the given TS problem.
The remaining part of the paper is structured as follows: In Section 2, we

introduce the basic notions used in this paper. Then, in Section 3, we gradually
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describe the modeling approach for the problem in detail. Next, in Section 4, we
present an approach to solve the problem in parallel, experimental results are
given in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

Constraint programming (CP) is one of the most powerful techniques to tackle
combinatorial problems, generally NP-complete or NP-hard. It employs con-
straint propagation interleaved with backtrack search. The problem to be solved
is expressed through a formal model by using constraints from a rich set of
modeling primitives. A constraint network R or constraint satisfaction problem
(CSP) is a triple 〈X,D,C〉, which consists of:

– a finite set of variables X = {x1, . . . , xk}, where k is the number of variables
in R,

– a set of respective finite domains D = {D(x1), . . . , D(xk)}, where D(xi) is
the domain of the variable xi, and

– a set of constraints C = {c1, ..., ct}, where a constraint cj is a relation defined
on the domains of a subset Sj of X, cj ⊆

∏
x∈Sj

D(X).

A Constraint Satisfaction Optimization Problem 〈X,D,C, f〉 (CSOP) is de-
fined as a CSP with an optimization function f that maps each solution to a
numerical value [4,5]. Generally, a solution t of a CSOP is a solution of the
corresponding CSP, where f(t) is maximal or minimal.

3 A CSP Model

We are now going to introduce our model in detail. Any feasible solution for
the TS problem is a permutation of {1, 2, ...n}, where n is the number of pieces
involved in film shooting. Hence, the problem can be viewed as to assign n values
to n slots. We define the decision variables as X = {x1, x2, ..., xn}, each of which
has domain {1, 2, ...n}, where xi = j if slot i is assigned to piece j in the sequence.
Therefore, the basic constraint of the model can be described as:

∀i, j, xi 6= xj (4)

where 1 ≤ i < j ≤ n. Constraint 4 can be realized by the allDifferent con-
straint [6], which is implemented in almost all constraint solvers.

Though a TS problem can simply be solved by the allDifferent constraint1,
the search space would be immense even for an small number of pieces in practice,
and consequently the problem cannot be solved in a reasonable time frame. For
example, the problem with 20 pieces, shown in Table 1, has 20! permutations
on the sequence {1..20}, which leads to the fact that to iterate over all the
1 The names of the constraints used in this paper are consistent with the names of
constraints used in the Choco Solver [7].
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possible permutations is impossible in a reasonable execution time. Therefore,
the subsequent constraints we are going to present are used to reduce the search
space.

Both a feasible solution and the solution in its reverse order have the same
cost function value because the expenses incurred by the idle resources in both
solutions are the same. Thus, it is unnecessary to re-explore such search regions
for the resolution process. The static symmetry breaking constraint in our model
is relatively simple and can be stated as:

x1 < xn (5)

Obviously, the arithm constraint can be used to express Constraint 5. By im-
posing Constraint 5, the overall search space is halved.

We can also take advantage of the intrinsic characteristics of the data to
shrink the search space further. Specifically, if there is a fixed pattern which an
optimal solution must contain, a set of optimality constraints can restrict the
search space to the solutions containing such fixed pattern. An optimal solution
remains unchanged if we exchange two pieces which require the same set of
resources. However, as we can see from Table 1, there are some pairs of pieces
in which two pieces request almost the same set of resources except for one
difference. For example, piece 1 and piece 3 require almost the same resources
apart from resource 3. As a result, only resource 3 has an effect on the positional
relation among pieces 1, 3 and other pieces in an optimal solution since piece
1 would be treated as the same as piece 3 if they require the same resources.
Moreover, piece 3 must be closer to the pieces (e.g., piece 13) requiring resource
3 in an optimal solution, compared to piece 1 because this arrangement of pieces
is bound to incur a lower overall cost.

Based on this observation, we can first find all pairs of pieces requiring the
same resources but one, and then, find a benchmark resource containing that
difference resource, which can be stated as:

| idxi − idxbm | < | idxj − idxbm | (6)

where idxi, idxj , and idxbm are set to the index of the value (piece) i, j, and
bm. the set of all idxi, idxj , and idxbm is:

{(i, j, bm) | i 6= j 6= bm, |Ri∪Rj |−|Ri∩Rj |= 1, (Ri∪Rj)\(Ri∩Rj) ∈ Rbm} (7)

Herein Ri, Rj , and Rbm represent the set of resources required by pieces i, j,
and bm (e.g., R1 = {1, 2}, R3 = {1, 2, 3}, R13 = {2, 3, 4}). We denote idxi and
idxj as the indices of piece i and piece j, where resources required by them
only have one difference, given by |Ri ∪ Rj |−|Ri ∩ Rj |= 1. The index of bm
(idxbm) is the benchmark for the indices i and j, in which piece bm entails the
different resource between resources required by piece i and piece j, which can
be expressed as (Ri ∪ Rj) \ (Ri ∩ Rj) ∈ Rbm. In other words, the criterion for
a benchmark is to select the piece requiring the only different resource between
resources required by piece i and piece j.
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Take the example mentioned above, piece 13 is the benchmark of pieces 3
and 1, and piece 3 must be closer to the benchmark than piece 1 is. We have
the following constraint: | idx3 − idx13 |<| idx1 − idx13 |. Please note that piece
13 is not the only choice of the benchmark. All the pieces requiring resource 3
(e.g., pieces 2, 8 etc.) can be the benchmark between piece 3 and piece 1.

Constraint 6 can be realized by the inverseChanneling, the distance con-
straint, and the arithm constraint. For a specific example of Constraint 6, we
first use the inverseChanneling constraint to record the indices of the decision
variables X by introducing new auxiliary variables IDX, given by:

X[i] = j ⇔ IDX[j] = i (8)

where i, j ∈ {1..n}. Having auxiliary variables IDX, we can control the distance
between given values in a output of a sequence easily. For a given value i, j, and
bm, Constraint 6 can be converted to:

distance | IDX[i]− IDX[bm] |< distance | IDX[j]− IDX[bm] | (9)

If one implements this model in the Choco solver, two extra auxiliary variables
must be introduced in order to store the resulting variables of Constraints 10
and 11 for the distance constraints. Therefore, both sides of the less than sign
(<) of the Constaint 9 can be replaced by:

distance | IDX[i]− IDX[bm] |= aux1 (10)
distance | IDX[j]− IDX[bm] |= aux2 (11)

Then, the arithm constraint can be used to restrict the relation between the
two auxiliary variables, given by:

arithm(aux1 < aux2) (12)

Apparently, one instance of Constraint 6 might reduce more than half of the
entire search space because the solutions satisfying | idxi − idxbm |≥| idxj −
idxbm | are ruled out. In the concrete implementation steps , we first find all the
pairs of pieces that only have one different resource, then impose the instances
of Constraint 6 for these pairs on the model.

Local search (LS), an incomplete search method for finding an optimal solu-
tion, is often the method of choice to solve CSOPs. Several ways to combine CP
and local search have been proposed in the literature [8,9]. One way to utilize
LS for CP is to freeze a fragment of the variables specified with fixed values
and to solve the subproblem defined by the uninstantiated variables. Hence, we
should carefully decide which variables should be frozen. For the data shown
in Table 1, resources 6 and 8 cost much more than other resources and there
is no intersection between pieces requiring resources 6 and the pieces requiring
resources 8; therefore, we assume that pieces involving with resource 6 or re-
source 8 are more likely to arrange together within an optimal solution. Please
note that this method does not guarantee that no optimal solution will be ruled
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out, but the experimental result shows that the best solution we obtained is the
same as that one provided in [3]. In our implementation, we treat piece 6, 7, 8,
and 9 as an entirety, say piece 21; and also treat piece 14, 15, 16, 17, and 18 as
another entirety, say piece 22. Consequently, the entire search space is reduced
from 20! to 13! ·5! ·4! by this means. Though, the more freezing variables are,
the more search space reduction is, there is a trade-off between search space
reduction and the optimal solutions possibly contained in the reduced search
space. In general, to apply LS to solve TS problem, we should consider to freeze
the pieces entailing the highest cost of the resource, the second highest cost of
the resources, etc. in turn, and then treat these pieces as entireties. Meanwhile,
we also take into account the trade-off we mentioned above. Based on the above
analysis, selecting variables for LS are automated:

1. Sort resource based on their cost in descending order.
2. Freeze pieces requiring the current highest cost resource.
3. If the number of frozen pieces can lead the computation ends in predefined

execution time (e.g., 20 mins), then the selection procedure stops. Otherwise,
we set the next resource in the sorted resources as the current resource and
then repeat step 2.

In summary, Constraints 4 and 5, together with constraints entailed by Con-
straint 6 with LS form the model used to tackle the TS problem.

4 Solving the TS in Parallel

We would like to briefly introduce Embarrassingly Parallel Search (EPS) [10] in
constraint programming. EPS indicates no communication requirement during
the solving process. An embarrassingly parallel workload distribution also implies
that the independent worker works on distinct data. EPS is well suited for solving
the TS problem in parallel since disjoint partial solutions can be easily obtained
before the solving process and then mapped to workers. Hence, we use EPS with
static decomposition to accelerate the solving process of TS problem.

First, a subset of the decision variables of the model is selected. One viable
way is to select the pieces that do not belong to any entirety. In other words,
pieces frozen by LS are excluded. For the data in Table 1, we chose a set of pieces
PS = {1, 2, 3, 4, 5, 10, 11, 12, 13, 19, 20} to generate partial solutions.

Then, the model presented in Section 3 is applied to the decision variables
whose domain is PS and the number of the decision variables is equivalent to
the cardinality of the set PS. The model used to generate the partial solutions
includes Constraints 4, 5, and constraints entailed by Constraint 6. Please recall
that all the pairs of pieces that only have one different resource are found, and
then we impose the instances of Constraint 6 for these pairs on the model in
sequential version. In the parallel version, the instances of Constraint 6 would
not be entailed by the pieces not contained in PS when generating the partial
solutions. In doing so, there are two advantages: First, the partial solutions can
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be generated in a reasonable time for the next step; second, solutions that cannot
be extended to an optimal solution wouldn’t be generated.

After generating the partial solutions, each worker receives the same number
of partial solutions and works on its own independent partial solutions in parallel.
Embarrassingly parallel execution works as follows on each worker:

1. The entireties are inserted into all possible positions of a partial solution so
that all possible permutations with entireties for all pieces are generated.

2. The cost function (Equation 2) is evaluated for each permutation. The
branch-and-bound algorithm is used here to avoid visiting the nodes that
are impossible to be extended as an optimal solution.

It is worth noting that PS doesn’t include all the pairs of pieces that only
have one different resource. Thus, in order to shrink the search space for each
worker, the instances of Constraints 6 are entailed by the remaining part of
such pairs of pieces. Also note that there is no communication between workers,
which means no communication cost; on the other hand, a new lower bound
discovered by a worker cannot be used by other workers for improving their
current resolution. Obviously, there is a trade-off between sharing lower bounds
and communication. We decided not to use communication, because, for the sake
of scalability of the parallel algorithm, more workers and smaller sub-problems
might lead to more expensive communication cost and the uselessness of sharing
lower bound since the resolution time of the sub-problems may be short.

The final step is to obtain the permutation with the smallest value of the
cost function.

5 Numerical Results

In order to confirm our theoretical discussion, we implemented the model as
described in Section 3 and Section 4 and its parallel version in the Choco Solver
4.0.6 [7] with JDK version 9.0.1. All experiments were performed on a computer
with an Intel i7-3720QM CPU, 2.60GHz with 4 physical and 8 logical cores, and
8 GB DDR3 memory running Ubuntu 17.10.

All tricks of solving TS problem in a reasonable execution time is essentially
to reduce search space. The constraints regarding search space reduction allowed
us only to evaluate 1,027,403,520 out of 20! feasible solutions, reducing approx-
imately 99.99% of the total search space. The following experiment was carried
out to test the effectiveness of the search space reduction sequentially and its
parallel version.

As can be seen from Table 2, the efficiency dropped rapidly as the number
of workers increased from 4 to 8. Theoretically, we would not have expected this
result since no communication is required. Thus, in order to eliminate the factors
such as the limit number of physical cores and the limited size of the cache, we
halved the partial solutions, and executed the first part of the partial solutions
and the second part of partial solution by using 4 workers in turn.
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Number of Workers 1 2 4 8
Execution time (s) 451.68 250.56 137.64 119.82

Speedup 1 1.8 3.28 3.77
Efficiency 1 0.9 0.82 0.47125

Table 2. Solving the TS on a multi-core computer

Four Workers First Part Second Part
Execution time (s) 83.34 81.42

Table 3. Use 4 workers to calculate the first part and second part in turn.

As a result, the speedup of 8 workers can be 5.42 ( 7.5281.389 ), and its efficiency
is 0.68.

The execution time of the sequential part for generating the partial solutions
was 25 seconds in the parallel version; therefore, by using Amdahl’s law [11] we
can calculate that the theoretical speedup of our approach is around 18.1 for
the given data. Additionally, one benefit of parallel solving for the TS is that we
may obtain different optimal solutions in a shorter time. For the problem shown
in Table 1, we obtained the following optimal solutions:

4 1 11 10 13 3 12 2 6 8 7 9 5 20 15 14 17 18 16 19
4 1 11 10 13 12 3 2 6 8 7 9 20 5 15 14 17 18 16 19
4 1 11 10 3 13 12 2 6 8 7 9 20 5 15 14 17 18 16 19
4 1 11 10 13 3 12 2 6 8 7 9 20 5 15 14 17 18 16 19

Table 4. Optimal solutions in order of pieces with cost 14,600

6 Conclusion

We have presented the model for TS problem, as well as utilizing data-level par-
allelism to speedup the execution. Besides, our approach also employs the local
search to reduce the search space. The experimental results indicate that embar-
rassingly parallel search can be an appropriate choice to solve such constraint
optimization problems.

Nevertheless, we believe there is still a potential to improve the performance
of our approach. Although it has performed well, Constraint 6 and the dual vari-
ables could be replaced by a tailored constraint that can realize the functional
requirements of Constraint 6 and use only one constraint instead of the dis-
tance, the arithm constraint, and the ifThen constraint for the dual variables.
Besides, the theoretical speedup can still be improved for larger instances though
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it is limited for the given data. Finally, we would like to explore the use of our
parallel approach to accelerate the resolution of other CSPs and CSOPs in the
future.
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