
HAL Id: hal-02197772
https://inria.hal.science/hal-02197772

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bayesian Linear Regression Model for Curve Fitting
Michael Li

To cite this version:
Michael Li. Bayesian Linear Regression Model for Curve Fitting. 10th International Conference on
Intelligent Information Processing (IIP), Oct 2018, Nanning, China. pp.363-372, �10.1007/978-3-030-
00828-4_37�. �hal-02197772�

https://inria.hal.science/hal-02197772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Bayesian linear regression model for curve fitting 

Michael Li 

CIS and School of Engineering and Technology, 
  Central Queensland University 

Rockhampton, Queensland 4701, Australia 

    m.li@cqu.edu.au 

Abstract. This article describes a Bayesian-based method for solving curve 
fitting problems. We extend the basic linear regression model by adding an extra 
linear term and incorporating the Bayesian learning. The additional linear term 
offsets the localized behavior induced by basis functions, while the Bayesian 
approach effectively reduces overfitting. Difficult benchmark dataset from NIST 
and high-energy physics experiments have been tested with satisfactory results. 
It is intriguing to notice that curve fitting, a type of traditional numerical analysis 
problem, can be treated as an adaptive computational problem under the Bayesian 
probabilistic framework. 
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1 Introduction 

The goal of curve fitting is to find a simple analytical function that best fits a set of data 
points. The best fit means that a certain error measure (such as mean squared error) 
should be minimized. Curve fitting is a challenging task because a single parametrized 
function may often not be able to represent a complicated curve due to the complexity 
of scattered data distribution. In addition, overfitting is a common problem where over-
matching numerically the requirement for the fit causes a severe deviation of the data 
trend. In terms of the terminology of neural computing, the model for fitting is over-
trained and leads to a poor generalization performance. To improve the fitting result, a 
linear combination of a set of basis function can be considered to replace the single 
parameterized function and efficient methods to prevent overfitting should be 
introduced. The typical efficient approaches to prevent overfitting includes using 
regularization and Bayesian prior. The former adds a penalty term in the objective 
function while the latter is to apply Bayesian probabilistic model to reduce overfitting.  

 Bayesian approach resolves the overfitting problems in curve fitting or regression 
analysis with two primary elements: (i) A full probabilistic description of the 
computational model; and (ii) Use of Bayes’ theorem. The former consistently deals 
with uncertainties for data model and its parameters in terms of probability distribution, 
while the latter is used to make an information inference related to a learning process 



from data to model through a conditional probability relationship. Denoting the 
observed data by D and the model parameter vector by w with assuming a prior 
probability distribution p(w), Bayes’ theorem can be expressed into the following form 
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where p(D|w) is called the likelihood function that evaluates the probability of the 
observed data for a given parameter w. The term p(D) can be obtained by integrating 
p(D|w)p(w) over all w and it can be viewed as a normalization constant. The term 
p(w|D) is known as the posterior probability distribution. Essentially Bayes’ theorem 
represents a learning process in which it transforms the prior knowledge to the posterior 
distribution with knowledge updates and highlights the fact that we have learned about 
the validity of the model parameter from consideration of the observed data.   

 Curve fitting based on Bayesian inference and linear regression models has been 
studied by several authors [1-4]. Most of the existing research in Bayesian curve fitting 
highlight using piecewise polynomials. Motivated by Bayesian reasoning, Denison et 
al. [1] proposed a method by using a series of piecewise polynomial for fitting a variety 
of curves. In any method with piecewise functions, the knot selection always is a crucial 
issue. Instead of directly selecting them, the number and the locations of the piecewise 
polynomials were modelled as parameters to be inferred in their method; a joint 
probability distribution was first built over them. Then the reversible jump Markov 
Chain Monte Carlo (MCMC) technique [3] was used to compute the posteriors. The 
presented method has achieved a good approximation for some continuous and smooth 
functions, even for those rapid varying curves. However the simulation results indicated 
that it was a computation expensive method, with the running time of a single fitting 
task up to 30 minutes on a SUN SPARC 5 workstation [1]. Dimatteo et al. [2] extended 
Denison’s method by developing a regression model called Bayesian adaptive 
regression splines. In their model, the free cubic splines were used as a set of basis 
functions and the number of knots and their positions were allowed to be free 
parameters that were determined from the data. Dimatteo’s model constructed a 
marginalised chain on the knot number and locations with providing methods for 
inference on the regression coefficients. Poisson priors on the number of knots were 
adopted. Their approach also applied the reversible jump Metropolis-Hasting MCMC 
simulation on the parameter pair - the number of knot and their locations. Additionally, 
Dimatteo’s model incorporated an important locality heuristic observation made by 
Zhou & Shen [5], which efficiently aided to place knots close to existing knots in order 
to deal with rapid changes. It has been reported that Dimatteo’s method presented more 
accurate estimates for a certain group of test functions. The main limitation may be that 
their test functions were mainly from an exponential family distribution.  More recently 
curve fitting based on Bayesian quantile regression has received growing attention [4,6-
7]. As a robust statistical model, Bayesian quantile regression provides an efficient 
alternative to the ordinary mean regression, particularly when the measured data 
contain a large amount of outliers. Chen and Yu [4] described a general approach for 
nonparametric quantile curve fitting incorporated with Bayesian inference. As usual 



Chen and Yu’s method performed quantile regression curve fitting using piecewise 
polynomials with the unknown number of knots and their locations as input parameters 
to be inferred. They adopted the asymmetric Laplace distribution as the likelihood 
function, which exhibited more flexibility. As this type of likelihood function 
introduces an extra scale parameter, it speeds up the convergence of the implementation 
of MCMC algorithm. This type of likelihood function also allows one to approximate 
the marginal likelihood ratio of the number of knots and their locations, which is an 
important factor in the inference for deciding the accept/reject probability. Although 
Chen and Yu’s method was competitive in accuracy and robustness in performing 
challenging fitting tasks, their approach didn’t produce a simple and universal empirical 
fitting formula for further applications.   

In this article, we propose a new method that incorporates Bayesian probabilistic 
inference in the RBF regression model for curve fitting. In particular, an additional 
linear term in RBF model has been introduced for a better approximation. Our approach 
will be utilized to investigate a few benchmark examples and subsequently is applied 
to fit experimental data from high energy physics measurements where stopping power 
curves of oxygen projectiles in elemental target materials carbon, silicon and gold are 
studied. The accuracy of stopping power data has significant influence in two 
application areas - ion beam analysis technique and radiation therapy [8].  

The organization of this paper is as follows. In Section 2, the proposed method is 
described in details. Next, the benchmark numerical examples are tested, and computer 
simulation results for stopping power data are discussed in Section 3. Finally, Section 
4 concludes the paper. 

 

2 Bayesian probabilistic regression model for curve fitting 

In Bayesian data analysis, a key concept is uncertainty. Statistically each value of the 
observed quantities inevitably falls in a small uncertain range. This mainly arises from 
measurement errors or noises. Similarly, values of parameters of a statistical 
computational model may also be in uncertainty, due to the finite size of data set to 
derive them. The best way for dealing with uncertainties is to use probabilistic 
modelling, in which both data and model parameters are analytically treated as random 
variables and their uncertainties are quantified by a probability distribution. Consider a 
general regression problem where the input variable is a vector x, the target variable is 
a scalar denoted by t, and an N-points sample data set 1{ , }x N

i i it =  is given. The 

regression problem that fits the data set 1{ , }x N
i i it = to an underlying function can be 

defined as follows: 
 

                                    ( ; )x w ε= +i it y             i=1,…,N                                     (1)               
where ε denotes the random error, and w denotes a vector of all adjustable parameters 
in the model. Under the linear regression model, the model function y(x;w) is a linearly-
weighted sum of M fixed basis functions φj(x), 
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The random error in data can be assumed to be a zero-mean Gaussian noise with 
variance β-1: 

                                           1(0, )ε β −
                                                         (3)                                                         

 Statistically it is a reasonable hypothesis that noises in data are Gaussian, since the 
underlying mechanisms generating physical data often include many stochastic 
processes while the central limit theorem of the probability theory reveals that the 
summation of many random processes tends to have the normal distribution. Hence 
from equations (1) and (3), the target variable t is a random variable and its conditional 
probability upon x and w satisfies a normal distribution with a mean equal to y(x;w) 
and variance β-1. It can be expressed as 

                           1( | , ) ( | ( , ), )x w x w β −=p t t y           (4)                                                                            
  

 As each data point is drawn independently and identically and its probability obeys 
the distribution of equation (4), the likelihood function of the entire dataset 1{ , }x N

i i it =   
is the product of the probability of each point occurrence and it is given by 
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   It should point out that from equation (5) and later, we refer to x=[x1….xN]T and  
t=[t1….tN]T as the entire data set {x,t} for convenient notations. It is possible to make a 
point estimate on the model parameter w by using the maximum likelihood (ML) 
estimate in equation (5). However the ML method often leads to overfitting data. To 
control the model complexity, a prior distribution over w is introduced. For simplicity, 
we add an isotopic Gaussian distribution of the form  

            1( | ) ( | 0, )w w Iα α −=p      (6)                                                        
   
where I is the unit matrix, and α is termed as the hyperparameter of model.   

The purpose of curve fitting is to predict the corresponding value t* of the target 
variable for a new test point x*, given the existing sample set {x,t}. Therefore it is 
necessary to evaluate the probability distribution of the predictive t* i.e. p(t*|x*,x,t). In 
a fully Bayesian treatment of the probabilistic regression model, in order to make a 
rigorous prediction for a new data point, it requires us to integrate the posterior 
probability distribution with respect to both the model parameter and hyperparameters. 
This is because the complete marginalization procedure would make effectively 
averaging over all different possible solutions corresponding to the individuals (w, α, 
β). However, the triple integration for a complete marginalization is analytically 
intractable. As an approximate scheme, the practical Bayesian treatment assumes that 
the hyperparametrs α and β are known in advance.  With this assumption, the expression 
of predictive distribution p(t*|x*,x,t) can be derived through marginalizing over w [9], 

                         * * * *( | , , ) ( | , ) ( | , )x x t x w w x t, , wα β= ∫p t p t p d                          (7)                                    



By using the Bayesian theorem, the posterior distribution p(w|x,t,α,β) can be written 
as 

                                  ( | , , , ) ( | , , ) ( | )p p pα β β α∝w x t t x w w                        (8)                                               
Substituting (4), (5), (6), and (8) into (7), after a series of algebraic manipulations, 

the predictive distribution p(t*|x*,x, t) can be simplified as a normal distribution 
             * * * * *2( | , , ) ( | ( ), ( ))x x t x x=p t t m s                                  (9)                

where m and s2 are the mean and variance of the predictive distribution of t*, they are 
given by 
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Here the matrix S is given by 
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 From the above inference, the posterior probability distribution of the predictive 

value of the target variable has been derived. In the statistical sense, mean characterizes 
the central location in a set of points, where the highest probability event occurs for a 
normal distribution. Hence the mean value m(x*) obtained from the predictive 
distribution equations (10) and (12) is the best approximation to the predictive t*. It 
represents the predictive value of the target variable at the new test point x*.   

Under the linear regression model, the regression function y(x;w)  is linear to model 
parameter w, while it is nonlinear to input variable x. As you have seen in equation (2), 
it can be expanded by a set of basis functions. In our previous study [10], we proposed 
to add a linear term to make a global correction for Gaussian radial basis function which 
suffers from the localized effect. With adding the extra linear term, the model regression 
function becomes the following form, 
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where ci is the center parameter governing the location of the basis function in the input 
space, a is the linear coefficient, and b is the constant term. By using the matrix 
notation, the expressions of (10)-(12) can be re-written as concise matrix forms, 

                          Tm SΦ tβ=                                                         (14) 
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In equations (14)-(16), two hyperparameters α and β are also as inputs to the 

established Bayesian model. We use the grid search technique based on cross-validation 
to determine these two hyperparameters. This is an effective tuning method to find an 
optimal setting. Briefly speaking we can train a learning model using a wide range of 
values of hyperparameters, evaluate their performance on a hold-out validation set, and 
select the value that produces the best performance. Another common method for 
estimating hyperparameter pair α and β is to use an optimization technique that was 
originally proposed by MacKay [11] and computationally implemented by Foresee & 
Hagan using Gaussian-Newton algorithm to the Hessian matrix of the error function 
through an iterative procedure.                      

3 Experimental results and discussions 

In this section, a few numerical examples are presented for the purpose of the test. The 
first test example is based on a widely studied problem in the machine learning 
paradigm, called the ‘SinC’ function problem. The ‘SinC’ function is the zero-order 
spherical Bessel function.                                 

A set of 100 data points of J0(x) is sampled in the interval [-10,10], where x’i are 
uniformly  distributed and the corresponding y’i are added in a zero-mean Gaussian 
noise. To test the robustness of the proposed method to the different level of noises, 
two level Gaussian noises with the standard deviation 0.1 and 0.2 are experimented 
respectively. Using a 7-basis functions Bayesian model with hyperparameters α=10-4, 
β=100 and α=10-4, β=25, two separate regressions have been performed for the above 
sample data sets. The regression results along with the original data are shown in Figs. 
1a&b, where the red solid line is the exact J0(x) function, the black dashed line denotes 
the regression curve that connects the means computed from the predictive distribution, 
and the light shaded region crosses one standard deviation each side of the mean. The 
experimental results show that the Bayesian model presents a smooth fitting for both 
level of noises. In the case of lower noise, the means of the predictive distribution well 
approximate the noisy data as illustrated in Fig1a. For the case of higher noise level as 
shown in Fig 1b, the overall shape of the predictive curve appears acceptable but some 
segments deviate from the exact function with a relatively large error, which reflects 



the possible enlargement of perturbation from some data points due to large random 
noises.  

                    

     
  

     
                             
Fig. 1a&b. Bayesian regression in the SinC synthetic data set with 100 points. (a) The 

standard deviation of added noise is 0.1; and (b) The standard deviation of added noise is 0.2. 
The red solid line denotes the exact SinC function, while the black dashed line represents the 
mean from Bayesian model.                       
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                   Fig. 2. Fitting result using Bayesian model for Hahn1 function 

                      

                    Fig. 3. Fitting result using Bayesian model for Gauss1 dataset 

 Another two functions we have tested are from the benchmark dataset of the 
National Institute of Standard Technology (NIST) [12]. They are Hahn1 function and 
Gauss1 dataset, which are often used to verify the accuracy of new developed nonlinear 
regression software package. They are generated from the true functions with adding 
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zero-mean normal distribution noises. The Hahn1 is a 7-parameters rational function 
and the Gauss1 dataset is generated from two well-separated Gaussians on a decaying 
exponential baseline plus normally distributed noise. The former can efficiently model 
the thermal expansion of electrons in copper while the latter is an important category 
of spectroscopic line shape profile. Figures 2 and 3 shows our Bayesian model well fit 
these two data sets.                        

                 
     Fig. 4. Fitting results using Bayesian model for stopping power data 

There are many practical applications in applied science and engineering using 
fitting curve method to fit experimentally measured data into curves. As examples to 
demonstrate our method, we consider a group of data from high energy physics 
experiments which are related to fitting stopping power curves. We select MeV oxygen 
projectiles in the target materials including C, Si and Au. The data to be fitted are 
primarily from the atomic and nuclear data compilations published by Nuclear Data 
Services, International Atomic Energy Agency (IAEA) (https://www-
nds.iaea.org/stopping). From Fig.4, it can be observed that the fitting curve produced 
by the proposed Bayesian method fits the data points exceptionally well and there is no 
overfitting issue at all. In addition, the fitting curve reveals the typical features of data 
point distribution such as peaks. Due to the constraint of pages, only one figure of 
stopping power data fitting is selected to show. 

4 Conclusions 

This study presents a theoretical framework based on Bayesian probabilistic model for 
solving nonlinear curve fitting.  With the introduction of an extra linear term, the 
proposed model enhances the performance of fitting accuracy, offering a new 
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alternative approach to conventional numerical analysis based method. Conceptually, 
a better approximation has achieved largely through the hybrid of Gaussian basis 
functions and a linear function.  Relative to the ordinary linear regression model, the 
proposed method effectively refines the basic regression model with a dual correction 
– a linear term contribution, and Bayesian posterior information feedback which 
controls the possible overfitting. Future work will explore the use of the developed 
method to establish empirical formula based on analysis of curve fitting result. In 
addition, a further investigation and more tests from diverse datasets should allow the 
implementation of this method as a proprietary software module to be embedded into a 
practical intelligent data analysis package for various applications. One limitations of 
the proposed method is to tune hyperparameters. The Bayesian approach helps to 
prevent overfitting by controlling model capacity but it gives rise a new issue that a 
careful tuning for hyperparameters is required. The optimization of hyperparameter 
itself is a fairly difficult problem. Although several algorithms such as grid search, 
random search and Bayesian optimization etc. have been developed for applications, 
smarter tuning methods like random forest algorithm are still being investigated 
extensively. Another limitation lies at the fixed basis function where the number of 
basis function actually may need to grow with the dimensionality of the input space in 
certain circumstance. This problem could be eased if the intrinsic dimensionality of the 
real data sets is not large due to some correlations of input variables. 
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