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Abstract. Service rate control in queues is an important problem in practice. 
For example, when the number of customers waiting for finished products is 
small production has a normal speed, but if it is greater, the production speed 
should be faster to meet the demand. For an exponential service time distribu-
tion, the optimality of the threshold type policy has been proved in literature. 
On the other hand, in production systems, production time follows a general 
distribution in general.  In this paper, service control of speed depending on the 
number of customers is discussed. The analytical results of an M/G/1 queue 
with arrival and service rates depending on the number of customers in the sys-
tem, which is called an Mn/Gn/1 queue, are utilized for computing performance 
measure of service rate control. Constant, uniform and exponential distributions 
on the service time are considered through numerical experiments. The results 
show that the optimal threshold depends on the type of the distributions even 
when the mean of service time is the same. 

Keywords: Mn/Gn/1 queue, Service Control, Threshold policy, Admission 

1 Introduction  

Service rate control problems are widely found in practical situations. In a supermar-
ket, if the queue of customers for payment is long, a cashier will be helped by some-
one, and in a communication network when the congestion occurs the faster line will 
be used.  In a make-to-order production system, when the number of customers wait-
ing for the finished products is small, production has a normal speed, but if it is great-
er, the production speed should be faster to meet the demand. In addition, the arrival 
rate of customers may depend on the number of waiting customers because some of 
the customers may be impatient. Such a system is represented as a queue with state-
dependent arrival and service rates.  

For the exponential service time distribution with a constant arrival rate, George 
and Harrison [1] discuss a service control problem and develop an asymptotic method 
for computing the optimal policy, and optimality of a threshold type policy has been 
proved in Dimitrakopoulos and Burnetas [2], in which optimal admission control is 
also discussed. In general, however, as production systems, service time follows a 
general distribution.   

In this paper, control problems of service speed depending on the number of cus-
tomers under various general service time distributions and Poisson arrivals of cus-
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tomers, which is called an Mn/Gn/1 queue, are formulated, and the effects of the types 
of distributions on the performance measure like a profit are discussed through nu-
merical experiments. To compute performance measure under given service rate con-
trol, the analytical results of an Mn/Gn/1 queue by Abouee-Mehrizi and Baron [3] are 
utilized, which has a single server with arrival and service rates depending on the 
number of customers in the system. Constant, uniform and exponential distributions 
on service time are considered through numerical experiments. Optimal threshold 
policies are compared among these distributions. Admission control is also discussed 
by changing the upper bound of the queue length. 

2 Model Description 

We consider an Mn/Gn/1 queue, where Mn means a Poisson arrival process with a 
state-dependent arrival rate, and Gn means a general service time distribution with a 
state-dependent service rate. This service rate is determined by a decision maker.  
When the number of waiting customers including a customer in service, which is 
called a state of the system, is i, the arrival rate is 𝜆𝜆𝑖𝑖 . For example, when customers 
arrive in a Poisson process with rate 𝜆𝜆 and an arriving customer observes state i, 
he/she is assumed to enter the system with probability 𝑞𝑞𝑖𝑖. Then the actual arrival pro-
cess in the system is a state-dependent Poisson process with rate 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑞𝑞𝑖𝑖 in state i 
(see Fig. 1). In addition, we assume that there is a finite integer 𝐾𝐾 which is a minimal 
value i satisfying 𝜆𝜆𝑖𝑖 = 0, that is 𝑞𝑞𝑖𝑖 = 0. It happens because if the queue length is too 
long, any customer cannot wait for service. On the other hand, if the manager wants 
to reduce the waiting time of customers because long waiting time leads to less cus-
tomers’ satisfaction or the system has to pay costs for the long delay, the system sets 
the threshold for queue length and refuses the further demand during the time in 
which the length attains this threshold. If this threshold is 𝐾𝐾, then 𝜆𝜆𝐾𝐾 = 0.  

 We explain the service control. There are J possible service rates 𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝐽𝐽, 
where 𝜇𝜇𝑗𝑗 < 𝜇𝜇𝑗𝑗+1 for 𝑗𝑗 ∈ {1,2, … , 𝐽𝐽 − 1}. When the state is i, the service rate decision 
is defined as 𝑎𝑎𝑖𝑖  for each  𝑖𝑖 ∈ {1,2, … ,𝐾𝐾}. Here, if 𝑎𝑎𝑖𝑖 = 𝑗𝑗, the service rate is 𝜇𝜇𝑗𝑗. The 
notation 𝜇𝜇𝑖𝑖  is the service rate in state i, and thus if 𝑎𝑎𝑖𝑖 = 𝑗𝑗, the service rate is  𝜇𝜇𝑖𝑖=𝜇𝜇𝑗𝑗.  
For each service rate 𝜇𝜇𝑗𝑗 , the service cost rate is 𝑐𝑐𝑗𝑗 , where 𝑐𝑐𝑗𝑗 < 𝑐𝑐𝑗𝑗+1 (𝑗𝑗 ≥ 1). The 
sequence {𝑎𝑎𝑖𝑖 , 𝑖𝑖 ∈ {1,2, … ,𝐾𝐾}} is a service control policy in this model.  

Assume that policy {𝑎𝑎𝑖𝑖 , 𝑖𝑖 ∈ {1,2, … ,𝐾𝐾}} is given. When the state becomes i just 
after some service is finished, new service starts and service time follows a general 
distribution function 𝐵𝐵𝑗𝑗(𝑥𝑥) when 𝑎𝑎𝑖𝑖 = 𝑗𝑗. If during service a new customer arrives and 
the state becomes i+1, then service rate becomes 𝜇𝜇𝑖𝑖+1. In this case, if the remaining 
service time is 𝜂𝜂 just before the arrival, after the arrival it is changed to 𝜂𝜂𝜇𝜇𝑖𝑖

𝜇𝜇𝑖𝑖+1
= 𝜂𝜂/𝛼𝛼𝑖𝑖+1, 

where 𝛼𝛼𝑖𝑖 = 𝜇𝜇𝑖𝑖
𝜇𝜇𝑖𝑖−1

 , 𝑖𝑖 ≥ 1. Here 𝛼𝛼𝑖𝑖 denotes the ratio of service rates for state i and 𝑖𝑖 − 1.  
When policy {𝑎𝑎𝑖𝑖 , 𝑖𝑖 ∈ {1,2, … ,𝐾𝐾}} is fixed, this system follows an Mn/Gn/1 queue 

which is defined in Abouee-Mehrizi and Baron[2]. Here we denote the service time 
distribution, its density function and the remaining service time density function in a 
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steady state by 𝐵𝐵𝑖𝑖(𝑥𝑥), 𝑏𝑏𝑖𝑖(𝑥𝑥), ℎ𝑖𝑖(𝑥𝑥) , respectively. As shown, 𝐵𝐵𝑖𝑖(𝑥𝑥) = 𝐵𝐵𝑗𝑗(𝑥𝑥) when 
𝑎𝑎𝑖𝑖 = 𝑗𝑗. For computational convenience it is assumed that 𝑐𝑐0 = 0 and 𝛼𝛼1 = 1.  

The reward and cost consist of the followings: the waiting cost rate for each cus-
tomer is w, the reward for each customer is r, and the service cost rate is 𝑐𝑐𝑗𝑗 when the 
service rate is 𝜇𝜇𝑗𝑗  as shown above. 

Let Z denote the average profit. For  𝑖𝑖 ∈ {0,1, … ,𝐾𝐾}, 𝑃𝑃𝐹𝐹(𝑖𝑖) is a steady state distri-
bution under the defined Mn/Gn/1/K queue with a given policy {𝑎𝑎𝑖𝑖 , 𝑖𝑖 ∈ {1,2, … ,𝐾𝐾}}. 
Then Z is given as Z=R-W-C, where 

𝑅𝑅 = 𝑟𝑟�𝑃𝑃𝐹𝐹(𝑖𝑖)𝜆𝜆𝑖𝑖

𝐾𝐾−1

𝑖𝑖=0

, 𝑊𝑊 = 𝑤𝑤�𝑖𝑖𝑃𝑃𝐹𝐹(𝑖𝑖)
𝐾𝐾

𝑖𝑖=1

, 𝐶𝐶 = �𝑃𝑃𝐹𝐹(𝑖𝑖)𝑐𝑐𝑎𝑎𝑖𝑖

𝐾𝐾

𝑖𝑖=1

                        (1) 

The objective in the model is to find an optimal service rate control policy {𝑎𝑎𝑖𝑖 , 𝑖𝑖 ∈
{1,2, … ,𝐾𝐾}} which maximizes the average profit Z.  

The following notations are also used. 
ℎ�𝑖𝑖(𝑠𝑠): Laplace transform of ℎ𝑖𝑖(𝑥𝑥), 
𝑏𝑏�𝑖𝑖(𝑠𝑠): Laplace transform of 𝑏𝑏𝑖𝑖(𝑥𝑥). 

 
Fig. 1. Mn/Gn/1 queue 

3 Analytical Results of Mn/Gn/1 Queue 

In Abouee-Mehrizi and Baron [3], an Mn/Gn/1 queue is analyzed theoretically (In [3], 
some typos in equations are found and they are corrected in the following). It is an 
extensive result of Kerner [4], which analyzes an Mn/G/1 queue.  

For the Mn/Gn/1 queue with an infinite buffer, under the condition that 

�
𝜆𝜆0
𝜆𝜆𝑖𝑖
�

1 − ℎ�𝑗𝑗 �
𝜆𝜆𝑗𝑗+1
𝛼𝛼𝑗𝑗+1

�

𝑏𝑏�𝑗𝑗+1(𝜆𝜆𝑗𝑗+1)

𝑖𝑖−1

𝑗𝑗=0

∞

𝑖𝑖=1

< ∞, 

the steady state distribution is given by 

𝑃𝑃(𝑖𝑖) =
𝜆𝜆0𝑃𝑃(0)
𝜆𝜆𝑖𝑖

�
1 − ℎ�𝑗𝑗 �

𝜆𝜆𝑗𝑗+1
𝛼𝛼𝑗𝑗+1

�

𝑏𝑏�𝑗𝑗+1�𝜆𝜆𝑗𝑗+1�

𝑖𝑖−1

𝑗𝑗=0

 ,    𝑖𝑖 = 1,2, … 



4 

 𝑃𝑃(0) =
1

1 + ∑ 𝜆𝜆0
𝜆𝜆𝑖𝑖
∏

1 − ℎ�𝑗𝑗 �
𝜆𝜆𝑗𝑗+1
𝛼𝛼𝑗𝑗+1

�

𝑏𝑏�𝑗𝑗+1(𝜆𝜆𝑗𝑗+1)
𝑖𝑖−1
𝑗𝑗=0

∞
𝑖𝑖=1

 

Here ℎ�0(𝑠𝑠) = 𝑏𝑏�1(𝑠𝑠),  and ℎ�𝑖𝑖(𝑠𝑠) satisfies the following recursive equations. 

 ℎ�𝑖𝑖(𝑠𝑠) =
𝜆𝜆𝑖𝑖

𝑠𝑠 − 𝜆𝜆𝑖𝑖
⎣
⎢
⎢
⎢
⎡𝑏𝑏�(𝜆𝜆𝑖𝑖) �1 − ℎ�𝑖𝑖−1 �

𝑠𝑠
𝛼𝛼𝑖𝑖
��

1 − ℎ�𝑖𝑖−1 �
𝜆𝜆𝑖𝑖
𝛼𝛼𝑖𝑖
�

− 𝑏𝑏�𝑖𝑖(𝑠𝑠)

⎦
⎥
⎥
⎥
⎤
. 

In the Mn/Gn/1/K queue, where the number of customers in the system is limited 
to K, the steady state distribution function 𝑃𝑃𝐹𝐹(𝑖𝑖) for 𝑖𝑖 = 0, … ,𝐾𝐾 − 1 is given by  

𝑃𝑃𝐹𝐹(𝑖𝑖) =
𝜆𝜆0𝑃𝑃𝐹𝐹(0)

𝜆𝜆𝑖𝑖
�

1 − ℎ�𝑗𝑗 �
𝜆𝜆𝑗𝑗+1
𝛼𝛼𝑗𝑗+1

�

𝑏𝑏�𝑗𝑗+1(𝜆𝜆𝑗𝑗+1)

𝑖𝑖−1

𝑗𝑗=0

,   𝑖𝑖 = 1, … ,𝐾𝐾 − 1, 

𝑃𝑃𝐹𝐹(0) =
𝑃𝑃𝐹𝐹𝐴𝐴(0)

𝜆𝜆0
𝜆𝜆𝐾𝐾−1

∏
1 − ℎ�𝑗𝑗 �

𝜆𝜆𝑗𝑗+1
𝛼𝛼𝑗𝑗+1

�

𝑏𝑏�𝑗𝑗+1�𝜆𝜆𝑗𝑗+1�
𝐾𝐾−2
𝑗𝑗=0 + 𝑃𝑃𝐹𝐹𝐴𝐴(0)�1 + ∑ 𝜆𝜆0

𝜆𝜆1
𝐾𝐾−2
𝑖𝑖=1 ∏

1 − ℎ�𝑗𝑗 �
𝜆𝜆𝑗𝑗+1
𝛼𝛼𝑗𝑗+1

�

𝑏𝑏�𝑗𝑗+1�𝜆𝜆𝑗𝑗+1�
𝑖𝑖−1
𝑗𝑗=0 �

, 

where 

𝑃𝑃𝐹𝐹𝐴𝐴(0) =
𝜇𝜇𝑏𝑏𝐹𝐹

𝜆𝜆𝐾𝐾−1 + 𝛼𝛼𝐾𝐾𝜇𝜇𝑏𝑏𝐹𝐹
,     𝑃𝑃𝐹𝐹𝐴𝐴(1) =

𝜆𝜆𝐾𝐾−1
𝜆𝜆𝐾𝐾−1 + 𝛼𝛼𝐾𝐾𝜇𝜇𝑏𝑏𝐹𝐹

, 

1
𝜇𝜇𝑏𝑏𝐹𝐹

=
1

𝜇𝜇𝐾𝐾−1
−

1
𝜆𝜆𝐾𝐾−1

 + ��
1
𝜇𝜇𝑗𝑗
−

1
𝜆𝜆𝑗𝑗
��

1
𝛼𝛼𝑖𝑖+1

𝑏𝑏�𝑖𝑖+1(𝜆𝜆𝑖𝑖+1)

1 − ℎ�𝑖𝑖 �
𝜆𝜆𝑖𝑖+1
𝛼𝛼𝑖𝑖+1

�

𝐾𝐾−2

𝑖𝑖=𝑗𝑗

𝐾𝐾−2

𝑗𝑗=𝑖𝑖

 

+
1
𝜇𝜇1

𝑏𝑏�1(𝜆𝜆1)

1 − ℎ�0 �
𝜆𝜆1
𝛼𝛼1
�
�

1
𝛼𝛼𝑖𝑖+1

𝐾𝐾−2

𝑖𝑖=1

𝑏𝑏�𝑖𝑖+1(𝜆𝜆𝑖𝑖+1)

1 − ℎ�𝑖𝑖 �
𝜆𝜆𝑖𝑖+1
𝛼𝛼𝑖𝑖+1

�
 

 
Using 𝑃𝑃𝐹𝐹𝐴𝐴(0) and 𝑃𝑃𝐹𝐹𝐴𝐴(1), we have 
𝑃𝑃𝐹𝐹(𝐾𝐾 − 1) = �1 − 𝐹𝐹𝐹𝐹(𝐾𝐾 − 2)�𝑃𝑃𝐹𝐹𝐴𝐴(0), 𝑃𝑃𝐹𝐹(𝐾𝐾) = �1 − 𝐹𝐹𝐹𝐹(𝐾𝐾 − 2)�𝑃𝑃𝐹𝐹𝐴𝐴(1)  

where 𝐹𝐹𝐹𝐹(𝑖𝑖) = ∑ 𝑃𝑃𝐹𝐹(𝑗𝑗)𝑖𝑖
𝑗𝑗=0 . 

  When the policy {𝑎𝑎𝑖𝑖 , 𝑖𝑖 ∈ {1,2, … ,𝐾𝐾} is given, by deriving steady state probabilities 
and substituting them to equation (1), the average profit can be obtained.   

4 Numerical Experiments 

4.1 Parameter settings 

In the following, the constant, uniform and exponential distributions are applied as 
service distributions. For given i, the mean of service time is fixed as 1

𝜇𝜇𝑖𝑖
. 

(a) Constant distribution  
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𝐵𝐵𝑖𝑖(𝑥𝑥) = �  0         (0 ≤ 𝑥𝑥 < 1/𝜇𝜇𝑖𝑖)
1                  (1/𝜇𝜇𝑖𝑖 ≤ 𝑥𝑥) , 𝑏𝑏�𝑖𝑖(𝑠𝑠) = 𝑒𝑒−𝑠𝑠/𝜇𝜇𝑖𝑖   

(b) Uniform distribution on [0, 2
𝜇𝜇𝑖𝑖

] 

𝐵𝐵𝑖𝑖(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

  

 0                      (𝑥𝑥 < 0)
𝜇𝜇𝑖𝑖𝑥𝑥
2

        �0 ≤ 𝑥𝑥 ≤ 2
𝜇𝜇𝑖𝑖
�

  1                  � 2
𝜇𝜇𝑖𝑖

< 𝑥𝑥�
, 𝑏𝑏�𝑖𝑖(𝑠𝑠) = 𝜇𝜇𝑖𝑖

2𝑠𝑠
�1 − 𝑒𝑒

−𝑠𝑠 2𝜇𝜇𝑖𝑖�  

(c) Exponential distribution 
𝐵𝐵𝑖𝑖(𝑥𝑥) = 1 − 𝑒𝑒−𝜇𝜇𝑖𝑖𝑥𝑥    (𝑥𝑥 ≥ 0),𝑏𝑏�𝑖𝑖(𝑠𝑠) = 𝜇𝜇𝑖𝑖

𝑠𝑠+𝜇𝜇𝑖𝑖
  

Set 𝐾𝐾 = 5, 𝜆𝜆 = 15, 𝑞𝑞𝑛𝑛 = 1 − n
150

 . Two types of service rates exist as 𝜇𝜇1 = 10 and 
 𝜇𝜇2 = 20. Service cost rates are set as  𝑐𝑐1 = 50 and 𝑐𝑐2 = 150, a waiting cost rate and 
reward for each service are 𝑤𝑤 = 2 and 𝑟𝑟 = 10, respectively. 

Here, the threshold policy is applied. The threshold which is the minimal value 
satisfying 𝜇𝜇𝑖𝑖 = 𝜇𝜇2 is denoted as  𝑖𝑖𝐵𝐵  (1 ≤ 𝑖𝑖𝐵𝐵 ≤ 𝐾𝐾 + 1), and under the threshold policy 
with 𝑖𝑖𝐵𝐵, 𝑎𝑎𝑖𝑖 = 1 for 𝑖𝑖 = 1,2, …, 𝑖𝑖𝐵𝐵 − 1, and 𝑎𝑎𝑖𝑖 = 2 for 𝑖𝑖 = 𝑖𝑖𝐵𝐵 , 𝑖𝑖𝐵𝐵 + 1, … ,𝐾𝐾. Here,  
𝑖𝑖𝐵𝐵 = 𝐾𝐾 + 1 means  𝜇𝜇𝑖𝑖 = 𝜇𝜇1 for all 𝑖𝑖 = 1,2, … ,𝐾𝐾, and 𝑖𝑖𝐵𝐵 = 1 means  𝜇𝜇𝑖𝑖 = 𝜇𝜇2 for all 
𝑖𝑖 = 1,2, … ,𝐾𝐾. 

4.2 Effect of distributions 

Table 1 shows probabilities, costs, and rewards for each 𝑖𝑖𝐵𝐵  and each service time 
distribution. In this table, 𝑝𝑝[𝑖𝑖] shows the steady state probability 𝑃𝑃𝐹𝐹(𝑖𝑖). For example, 
when service time is constant, 𝑖𝑖𝐵𝐵 = 3  is the best threshold and thus it is optimal 
among threshold type policies that the slower service is applied in states 1,2,3 and the 
faster service is used in states 4 and 5.  

For all distributions, as 𝑖𝑖𝐵𝐵 increases, R and C decrease and W increases. When 𝑖𝑖𝐵𝐵 is 
large, the low service rate is applied more and 𝑃𝑃𝐹𝐹(𝐾𝐾)  is large, and thus less customers 
are permitted to receive service. As a result, the total arrival rate and the average ser-
vice cost decrease. On the other hand, the low service rate leads to the long waiting 
time regardless of the less arrival rate of entering customers.  

As the variance of service time increases, R and C decrease. 𝑃𝑃𝐹𝐹(𝐾𝐾) increases as the 
variance increases, and thus in the similar way as above the increase of variance leads 
to less amount of entering customers and less service cost. For constant, uniform and 
exponential distributions, the values of optimal  𝑖𝑖𝐵𝐵 are 3, 4 and 5, respectively. Thus, 
the type of service time distribution affects the optimal threshold.  

In the case that  𝜆𝜆 = 15,𝑞𝑞𝑛𝑛 = 1 − n
150

, as shown in Table 1, as the variance increases, 
the profit Z decreases for each  𝑖𝑖𝐵𝐵. Table 2 shows probabilities and profits, in the case 
that 𝜆𝜆 = 20,𝑞𝑞𝑛𝑛 = 1 − 𝑛𝑛

200
, under several types of service time distributions for  𝑖𝑖𝐵𝐵=5, 6.  

In this case, it is found that the uniformly distributed service time achieves more prof-
its compared with the case of constant service time distribution with the same mean.  
When 𝑖𝑖𝐵𝐵 is high, reward and service cost are almost the same, and the difference of 
waiting time cost becomes more important to profit Z.  
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4.3 Admission of Arrivals 

As shown in section 2, parameter K can be considered as an admission control param-
eter. Table 3 shows the values of profits Z for various K and threshold 𝑖𝑖𝐵𝐵, under uni-
form service time distribution, when 𝑐𝑐2 =130 and 150. For 𝑐𝑐2 =130 the profit is 
greater as K is larger. This is because the greater K leads to more customers receiving 
service, which gives more profits. When cost parameter 𝑐𝑐2  is 150, however, K=4 
maximizes the profit when threshold 𝑖𝑖𝐵𝐵 is 3 or 4, and for K=5 is the best when 𝑖𝑖𝐵𝐵 is 2. 
The large K implies that the more customers receive the faster service, and when the 
service cost parameters are high, the service cost has more effect on Z compared with 
admission reward. For 𝑐𝑐2 =150, the combination of 𝑖𝑖𝐵𝐵 = 4 and K=4 gives the best 
profit. 

5 Conclusion 

This paper has formulated a mathematical model of service rate control in a state-
dependent M/G/1 queue. Throughout numerical experiments, it is found that under 
threshold policies, the value of optimal threshold depends on the type of service time 
distributions. Usually, as the variance of service distribution increases, the reward 
from by customer arrivals and the holding cost decreases and the profit also decreas-
es. In some case of parameter sets, however, the total profit is greater under the uni-
form distribution of service time compared with the case of the constant distribution. 
In addition, the combination of optimal threshold of service and admission of arrivals 
is observed to depend on cost parameters.  

The effects of various parameters such as the arrival rate and 𝑞𝑞𝑛𝑛 into performance 
need to be investigated. Theoretical discussion for the optimality of threshold policies 
under general distributions are also important. They are left for further research.  
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Table 1. Probabilities and Profits (𝜆𝜆 = 15,𝑞𝑞𝑛𝑛 = 1 − n
150

) 

(a) Constant distribution 

 
 

(b) Uniform distribution 

 
 

(c) Exponential Distribution 

 
 
 
 
 
 
 
 
 
 

iB 6 5 4 3 2 1
p[0] 0.0086 0.0102 0.0194 0.0422 0.1027 0.2736
p[1] 0.0297 0.0354 0.0672 0.1460 0.3554 0.3048
p[2] 0.0741 0.0885 0.1677 0.3644 0.2658 0.2090
p[3] 0.1722 0.2055 0.3897 0.2525 0.1584 0.1222
p[4] 0.3914 0.4670 0.2647 0.1464 0.0885 0.0681
p[5] 0.3240 0.1933 0.0914 0.0484 0.0291 0.0224
R 99.142 118.307 133.666 140.515 143.915 145.280
W 7.760 7.327 6.174 4.921 3.724 2.947
C 49.571 68.819 84.637 92.625 99.051 108.960
Z 41.811 42.161 42.855 42.969 41.140 33.373

iB 6 5 4 3 2 1
p[0] 0.0238 0.0286 0.0442 0.0757 0.1414 0.2852
p[1] 0.0513 0.0617 0.0952 0.1631 0.3046 0.2652
p[2] 0.0976 0.1173 0.1811 0.3102 0.2393 0.1968
p[3] 0.1770 0.2127 0.3285 0.2298 0.1630 0.1314
p[4] 0.3146 0.3780 0.2381 0.1521 0.1045 0.0837
p[5] 0.3356 0.2017 0.1129 0.0692 0.0471 0.0377
R 97.617 117.303 130.675 137.538 141.246 142.958
W 7.428 6.910 5.919 4.854 3.851 3.153
C 48.809 68.735 82.886 91.323 98.318 107.219
Z 41.380 41.659 41.870 41.361 39.076 32.587

iB 6 5 4 3 2 1
p[0] 0.0500 0.0608 0.0816 0.1178 0.1820 0.3079
p[1] 0.0750 0.0912 0.1225 0.1766 0.2729 0.2309
p[2] 0.1117 0.1358 0.1825 0.2632 0.2033 0.1720
p[3] 0.1654 0.2010 0.2701 0.1948 0.1505 0.1273
p[4] 0.2431 0.2955 0.1985 0.1432 0.1106 0.0936
p[5] 0.3549 0.2157 0.1449 0.1045 0.0807 0.0683
R 95.001 115.495 126.174 132.465 136.317 138.423
W 7.082 6.453 5.632 4.765 3.954 3.345
C 47.501 68.533 80.256 88.353 95.414 103.817
Z 40.418 40.508 40.286 39.347 36.948 31.260
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                                  Table 2. Probabilities and Profits (𝜆𝜆 = 20,𝑞𝑞𝑛𝑛 = 1 − 𝑛𝑛
200

) 
 

(a) 𝑖𝑖𝐵𝐵=5                                                         (b) 𝑖𝑖𝐵𝐵=6 

                  
 

 
Table 3. Profits under different Parameter K ( 𝜆𝜆 = 15,𝑞𝑞𝑛𝑛 = 1 − n

150
) 

 

 

constant uniform exponent
p[0] 0.0008 0.0067 0.0219
p[1] 0.0048 0.0204 0.0439
p[2] 0.0238 0.0576 0.0873
p[3] 0.1134 0.1583 0.1728
p[4] 0.5321 0.4292 0.3405
p[5] 0.3252 0.3278 0.3336
R 132.443 132.115 131.172
W 8.294 7.933 7.534
C 82.480 82.447 82.268
Z 41.669 41.735 41.370

constant uni exponent
p[0] 0.0006 0.0050 0.0164
p[1] 0.0036 0.0154 0.0329
p[2] 0.0179 0.0434 0.0654
p[3] 0.0856 0.1192 0.1296
p[4] 0.4015 0.3232 0.2553
p[5] 0.4908 0.4937 0.5004
R 99.943 99.500 98.356
W 8.712 8.443 8.151
C 49.972 49.750 49.178
Z 41.259 41.307 41.027

iB=8 7 6 5 4 3 2 1
c2=130 K=3 41.690 45.895 47.272 44.056

4 42.096 46.404 49.087 49.278 45.979
5 41.380 45.962 48.889 50.382 50.154 46.883
6 40.118 44.400 47.827 49.889 50.928 50.544 47.317
7 38.566 42.804 46.337 48.678 50.296 51.152 50.712 47.524

150 3 41.690 41.141 38.370 30.828
4 42.096 42.116 41.436 38.937 32.054
5 41.380 41.659 41.870 41.361 39.076 32.587
6 40.118 40.528 41.174 41.555 41.192 39.062 32.813
7 38.566 39.048 39.926 40.753 41.272 41.022 39.001 32.900
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