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Abstract. Services are today over 70% of the Gross National Product
in most developed countries. The productivity improvement of services
is increasingly important and it relies heavily on a deep understanding
of the service processes. However, how to collect data from services has
been a problem and service data is largely missing in national statistics,
which brings challenges to service process modelling.

This work aims to simplify the procedure of automated process mod-
elling, and focuses on modelling generic service processes that are location-
aware. An approach based on wireless indoor positioning is developed to
acquire the minimum amount of location-based process data that can be
used to automatically extract the process models.

The extracted models can be further used to analyse the possible im-
provements of the service processes. This approach has been tested and
used in dental care clinics. Besides, the automated modelling approach
can be used to greatly improve the traditional process modelling in var-
ious other service industries.

Keywords: process modelling, service process, location-based, automated

1 Introduction

Services are increasingly important to the economy: efficiently and effectively
running service operation is the key for gaining a competitive edge in almost
every industry. The productivity improvements explain the changes in the prof-
itability of industries and in the welfare of societies. Especially, the impacts
of technology and innovations can be analysed by Total Factor Productivity
(TFP) improvement [4,30]. We have developed the analysis of productivity im-
provements of services by calculating the effects of process changes in the service
performance [11]. This is based on the comparison of the process models before
and after the service improvement. To speed up the modelling of processes wire-
less measurement has been developed [34]. This article shows how the process
model of one person can be extracted automatically from the wireless measure-
ment data. The extraction of the process models with interacting teams of people
is still under study.

The improvements of services rely heavily on a deep understanding of the
service process, it is inevitable that we should consider service innovation from



2 Ye Zhang et al.

the process model viewpoint. A service process model prescribes how a particular
service is carried out. Partington et al. [23] demonstrated that through analysing
the processes, detailed insights into clinical (quality of patient health) and fis-
cal (hospital budget) pressures in health care practice were provided. Rovani et
al. [26] also testified that modelling the healthcare service process mediates be-
tween event data reflecting the clinical reality and clinical guidelines describing
best practices in medicine.

However, how to collect process data from services has been a problem. Halo-
nen et al. [11] documented the healthcare process of the acute neurology ward
in Helsinki University Hospital based on interview data. Constructing process
models from scratch with traditional approaches often requires the involvement
of field experts, which is difficult, expensive and time-consuming. An alterna-
tive way applies process mining techniques to extract process models from event
logs. This technique has been widely explored in the healthcare sector: Rebuge
et al. [25] analysed the hospital emergency service, Mans et al. [17] studied the
gynecological oncology process, Blum et al. [5] mined the laparoscopic surgery
workflow. However, one limitation is that the quality of a mined model depends
on whether the log covers all the dependencies between activities. The data qual-
ity of real-life logs usually is far from ideal: they are usually noisy, incomplete
and imprecise [6]. Besides, the goal of most of the process mining research is
to extract domain-specific workflows [18], but approaches that are capable of
picturing more generic processes are still lacking. Additionally, while the Big
Data era opens new prospects for enabling service intelligence, it also proposes
challenges to process mining [19,31]. The integration of high volume data from
various sources complicates the operation of process mining. Therefore, in this
work, we tackle these challenges and aim to:

— Simplify the procedure of automated process modelling. Instead of using a
mass of redundant event logs as input data, we aim to collect the minimum
amount of process data that is required in the modelling of a process.

— Ensure the quality of mined models, especially model completeness. The
input data used for the process modelling should be precise and cover all
possible ways of executing a process.

— Develop approaches for modelling more generic services than domain-specific
service processes.

Quite often, activities in the generic services have the property of being location-
aware, which means that a particular activity happens in a specific location.
Thus, location information can be used to infer the happenings of activities [34].

The development of inexpensive and unobtrusive sensors has enabled real-
time activity recognition and automated process modelling [21,24,32]. Different
wireless indoor localization technologies offer various levels of cost, accuracy and
applicability. These include technologies based on radio-frequency (RF) [2,20],
WiFi networks [12,14,28,29,33], ambience fingerprinting using the camera and
microphone of a mobile phone [1], and using the accelerometer and compass of
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a phone [7]. Many of these are based on employing hardware that is built into a
smartphone.

When modelling location-based service processes, the accuracy of localiza-
tion is not the primary requirement. Therefore, we decided to use an easy and
inexpensive solution that is accurate enough for our purposes: indoor localiza-
tion based on Bluetooth sensors and the Bluetooth hardware of smartphones.
Bluetooth-based localization is low-cost, highly ubiquitous, very easy to imple-
ment and deploy, and has low power consumption and allows ad-hoc connections
with room-wise accuracy [8,13].

Based on this inexpensive indoor localization, this article presents an ap-
proach for automated process modelling. Our light-weight process data acqui-
sition system collects the minimum amount of service process data needed for
process modelling. This article describes our approach for automatically mining
a process model. The obtained process model could then be used by tools such
as 3VPM [15] to analyse and optimise the process performance.

The rest of the paper is organised as follows: Section 2 introduces the concep-
tual framework of the service process model. Section 3 illustrates the automated
process modelling system. Section 4 discusses the analytical approach used in
process model extraction. We describe how the system was evaluated in a labo-
ratory case study in Section 5, and in a dental care clinic in Section 6. Section
7 concludes the paper with the limitations of the current system and directions
for future work.

2 Conceptual Framework of Service Process Model

This section discusses the conceptual framework of the service process model
that is used in this study: the concepts of service process and service process
model, and block-structured model representation. Besides, this section defines
generic service processes as the focus of this study, and distinguishes them from
domain-specific processes.

2.1 Process Model Representation

A service process shows how a particular service is carried out, it pictures all
the possible ways to execute a service process. A service process includes a
sequence of activities, and each activity is a major unit of work. By performing
the sequence of activities, the service process outputs a service as a result.

The process model representation used in this study is based on a block-
structured model that uses boxes and arrows. One box denotes an activity, whose
occurrence usually lasts a certain service time. Arrows between activities define
the partial order of activities. If there are several arrows leaving a box, then each
arrow is attached by the probability of transition from the current box to the
box pointed by the arrow. The sum of the probabilities of arrows leaving one
box is 1.
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The block-structured models can be represented in form of trees [35], or
terms, or diagrams. Block-structured models have advantages of not containing
any deadlocks or other anomalies, moreover, the models captured are well-formed
and always sound [27]. Figure 1 illustrates the process model representation in
the form of a diagram, which describes an example of a healthcare service. In
the example, we use oval-shaped boxes to represent activities.

56% il
44% 20%
N
—— Activity 1 | 100%
// ’

\\h__’ e

Fig. 1: Example of a service process model in the form of a diagram

In general, there are three basic types of transitions between activities:

— A sequential transition indicates that activities are performed in a sequential
order. For example, three sequential activities in Figure 1: Activity 2, Ac-
tivity 3, Activity 4. A single arrow between two activities a; and as means
that a; must precede as and ay follows a; with probability 1.

— An alternative transition indicates the occurrence of exactly one activity out
of all alternative activities at a time. In the example model, Activity 2 and
Activity 1 are alternative activities, which means for a particular execution
of the service, the process will proceed with either Activity 2 or Activity 1.

— A parallel transition means that the activities can be performed at the same
time in parallel.

Sequential and alternative transitions are used in this research to model the
processes of a single actor. Parallel transitions are applied in multi-actors collab-
oration processes, in which activities can be performed by different team actors
in parallel. Our process models inherently include parallelism when several per-
sons or customers are moving between the activities, which is similar to queuing
networks. In the automatic measurement, we do not obtain more information on
activity ordering than transaction probabilities.

2.2 Generic Service Process and Domain-specific Process

In the healthcare sector, most research so far has focused on mining domain-
specific processes. Here domain-specific refers to treatment-specific, such as a
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laparoscopic surgery process [5] or a gynecological oncology process [25]. Such
a process can be extracted from event logs of existing medical treatment sys-
tems. However, there are more generic activities in the service process that have
no trails in any administrative system or medical device. This gap requires ap-
proaches that are capable of picturing more generic service processes.

According to the process definition given by Davenport [9], treatment-specific
processes can be understood as small processes, and generic service processes are
larger processes that serve an entire set of service activities. Davenport reckons
that larger processes have greater potential for radical benefits, and a key aspect
of process innovation is to focus on broad processes. Generic activities are often
location-aware, in the sense that a particular activity is performed at a specific
location. Therefore, we abstracted generic processes to location-based ones. An
indoor positioning technique such as Bluetooth was considered. Bluetooth is a
mature research field and has been widely studied [3,22]. This study integrates
Bluetooth indoor positioning and Internet of Things (IoT) to collect service
activity data and construct service process models.

3 Automated Process Modelling System

In the previous sections, we discussed the target process group of this study
and introduced the process model representation applied in it. In this section,
we present an automated process modelling system, Figure 2 illustrates our
approach, which has 4 steps:

— Step one: planning. First, determine targeted process activities and locations
where these activities are performed. Then place Bluetooth sensors in these
activity locations.

— Step two: process calibration. For process p, train a process-specific subset of
Bluetooth sensors S(p) on the mobile device-side. Meanwhile, it also collects
training data and transfers it to the server-side to compute activity patterns
and other parameters, which are used in process measurement for activity
recognition.

— Step three: process measurement. Collect process data and synchronise them
to the server continuously for activity recognition.

— Step four: process modelling. Based on the information of recognised activi-
ties, model the entire process on the server-side.

3.1 Input Data of the Process Modelling System

Bluetooth data is collected to analyse indoor location information, and further-
more be used to infer location-based activities. The system requires information
of the activities that compose the process, which is defined as follows:



Ye Zhang et al.

1: Planning

Define targeted
activities

Place wireless

sensors to locations

i - Train sensor set

- Collect training data

3: Process Measurement

Conduct process
measurement

Mobile device side 1

4: Process Modelling

Extract activity
patterns

Compute other
activity parameters

Server side

Apply activity pattern
matching

!
Determine ambiguous
activities

v
Eliminate noisy
activities

Identify activities
|

Compute average service
time of activities
¥
Compute transition
probabilities between
activities

Fig.2: The approach used for automated process modelling

Definition 1. Let a = (id, name, location, S, C S) denote the basic input
information of an activity: an activity identifier, a name, a location where it is
performed, and a set of Bluetooth sensors that are placed to the location. Then
for a service process p with n activities, A(p) = {a1,...,a,} denotes the set of
activities in the process.

In addition, the system also requires information of the Bluetooth devices
that are involved in the process measurement. Let D = S U U be a set of
Bluetooth devices that includes Bluetooth sensors (denoted by S = {s1,...,5})
and mobile devices (denoted by U = {uy,...,u,}). The minimum information
that is required to identify a Bluetooth sensor or a mobile device is the unique
Bluetooth MAC address.

3.2 Calibration of the Process Measurement

In order to position activity locations, we collect Bluetooth Radio Signal Strength
Indications(RSSI) data, which can be used to infer the location information
of activities. However, the radio propagation of Bluetooth sensor is extremely
complex and unstable. We compared the performance of Bluetooth sensors by
measuring their RSSI values from the same distance away, but the radio signal
strengths obtained varied dramatically. As a result the RSSI values cannot be
used directly, we had to include an essential step: calibration and introduce an
analytical approach that converts RSSI values at each time stamp into a numeric
vector.

Figure 3 demonstrates three independent calibrations for different processes.
For a particular process p;, we train a process-specific subset of Bluetooth sensors
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S(p;) from the Bluetooth sensor set S, S(p;) C S. Different processes can consist
of activities that are performed at the same location, which also means one sensor
placed in one location can be involved in the measurements of multiple processes.
For example, in Figure 3, sensor s1¢ and sensor s;3 are used in the measurements
of Process A and Process B, sensor s7 is involved in the measurements of Process
B and Process C.

Sensor set §

sl

52 = Sensor subset
3 o510 o R Stpx) Slps)  Stpc)
513
s4 bt s1 s6 s4
ta ™, s.s J ot
s5 -, | . s11 s7 s5
% Y 2 s8  s7
s7 \
Y s12 s
58 t1 %,
o -~ s12 .. i“ N X, s3 510
% _________ 52 .t 53 ; S5 s10 <13
s10 o511 M' ' =
i s13
511
si2 > g
Process A Process B Process C

513

Fig.3: Three calibration operations train different subsets of Bluetooth sensors
(S(pa), S(ps), S(pc)) for different processes (pa, ps, pc)-

During this, we also collect a training data set B’ = {e,...,e}} with a
sampling rate f, so that the timestamp of a record ist = 0+ n - f, n € N.
Training data is defined as follows.

Definition 2. At time point t, a calibration event record for mobile device u
is ¢/ = (t,Ry), where R, is a set containing one RSSI value rs for each sensor
s € S. Herers =0, if sensor s is not in the radio detecting range of u, otherwise,
rs equals real-time RSSI value of the sensor.

Figure 4 shows the example of training data that is collected from the cal-
ibration of Process A. In the first event tuple, at time point ¢;, RSSI values of
sensor s1 and s1; are —89 and —85, other sensors are out of range, hence RSSIs
are 0.

In addition, calibration synchronises the device’s local time with the remote
server time, to maintain the timestamps of records that are collected from dif-
ferent devices consistent. This is an essential step for multi-user collaborative
activity recognition. In practice, calibration only requires an administrator to
carry all the user devices in a basket and walk through all the locations once,
letting the devices measure a few data points of RSSI information at each lo-
cation. Calibration is subject-independent, it keeps general users away from the
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Time sl s2 s3 s4 | s5 s6 57'58 s9 510 s11 512 s13

t1 88 0/0 0 O O 0|0 O 0|8 0]0
t2 o090 0 O O 0|0 O O|O -8 O
t3 0o/0/9 0 0 0 O|0O/ 0O/0 0 0O
t4 o/o/0 0O 0O O O|O 0|75 0 0|77

Fig.4: Example of Process A’s calibration event record: ¢’ = (¢, R;). At time
point t1, calibrate the sensors (s1,s11) of activity ai, and at to, calibrate the
sensors (82, s12) of activity as, and so on.

burden of the training phase, and provides users with a ready-to-use application,
which will facilitate the application of this system.

3.3 Process Measurement

Process measurement collects process data E = {ey, ..., €, ...} and synchronises
them to the server continuously for activity recognition. With the objectives of
simplifying the procedure of automated process modelling, we only collect the
minimum amount of data that is required to model a process: activities, location
of activities, activity begin and end time, and the actor who performs the process.

This work studies processes performed by a single user, instead of analysing
collaborative processes that involve multiple users. Hence, a process measured
is user-specific, and the measurement record has an additional user identifier in
comparison with calibration records. We use Bluetooth MAC address of a mobile
device as the user identifier, and define measurement data as follows:

Definition 3. For process p, a measurement event record collected for user u;
at time point t is e = (t,u;, R(p)¢), where R(p): is a set containing one RSSI
value 75 for each sensor s € S(p). Here rs = 0, if sensor s is not in the radio
detecting range of u;, otherwise rs equals real-time RSSI value of the sensor.

Figure 5 shows the example of measurement data that is collected from the
measurement of Process A. Measurement data is similar to training data in
Figure 4. Besides the additional user identifier, measurement records are also
process-specific, which means it only measures the RSSI values R(p) of process
related Bluetooth sensors S(p).

When a particular process p is selected to be measured, information about
the corresponding set of Bluetooth sensors S(p) will be synchronised from the
remote server. Subsequently, a background service is started and it applies asyn-
chronous Broadcast Receiver schema to detect RSSI vectors periodically. The
asynchronous broadcast receiver schema is basically a broadcast receiver that
keeps listening to two actions: Action one, a remote Bluetooth sensor found; Ac-
tion two, one Bluetooth inquiry finished. Action one is triggered when the mobile
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Time User s1 s11 s2 sl12 s3 sl10 si3
t1 ul 66 65 95 | O 0 0 0
t1 u2 0 0 0 0 68 0
t2 ul 0 93 -75|-93 | -89 0 0
12 u2 0 0 0 0 0 69 | -73
t3 ul 0 0 0 0 -78 0 0
t3 u2 -87 | -85 | -73 | -89 0 0 0
t4 ul 0 0 0 0 0 -71 | -74
t4 u2z 97 |94 | -77 |71 | -89 | O 0

Fig.5: Measurement data samples of Process A: e = (t,u;, R(p,)¢). At time
point ¢, activity aq is performed, RSSI values of sensors (s1,$11) are received,
due to the signal overlapping, we also receive the RSSI value of sensor s; that
is placed in another location.

device enters the radio proximity of a fixed Bluetooth sensor, in the meantime,
the system collects real-time Bluetooth RSSIs. Action Two is triggered when
one Bluetooth inquiry duration ends, which is about 12 seconds and is the same
as the system’s sampling rate. Thereafter, a new Bluetooth discovery will start.

Upon this architecture, the integration of IoT enables automated process
modelling: the system collects tuples continuously, meanwhile, the mobile de-
vice synchronises tuples to the remote server through Wi-Fi periodically. The
synchronising rate is adjustable for different measurement needs.

The system applies Google Volley networking framework! to stream data
between the server and the mobile devices. Server side applies activity pattern
matching and sensor performance parameters to recognise explicit activities as
well as ambiguous activities. Ultimately, window size is used over incoming tuples
to eliminate noisy activity detections.

4 Process Model Extraction

In this section, we discuss the analytical approach used to identify process activ-
ities and extract process models. To simplify the following discussion, we assume
that there is only one person whose activities are being measured.

4.1 Computing Activity Patterns and Other Parameters

During the calibration, the mobile device executes sensor training S(p) and col-
lects training data E’. Mobile devices are taken to walk through all the locations
of activities and to measure a few data tuples at each location. The calibration
process is based on activity information A(p) defined in section 3.1, and each
training tuple is labeled according to A(p).

! https://developer.android.com/training/volley /index.html
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Then, the server side’s analytical process uses training tuples to compute
activity patterns and other activity related parameters. Figure 6 illustrates the
activity pattern extraction process. Pattern matching approaches for activity
recognition were used in other research as well: Faragher and Harle [10] that
used fingerprint techniques, and Martikainen [16]. The activity pattern used in
this study is defined as follows.

AlpA) = {a1, a2, a3, a4}
al a2 a3 a4

s1, s11)s2, s12|s3 (s10, s13
Activity Patterns

al 2 1 0 0

Training data / a1 2 o 0 0

Label Time User sl si11 s2 si12 s3 si10 si3 a2 2200

al t1 ul 66| -65-95 0 0 0 0 a2 0 2 0 0

al 12 ul -63|-64 | 0 0 0 0 0 a2 1 2 1 0

az 13 ul -93|-89 | -75|-76 O 0 0 a3 0 0 1 0

az2 t4 ul 0 0 |-69 | -72 0 0 0 a4 0 0 0 2
az2 5 ul 0 |-87|-70 | -68 | -88 0 0
a3 6 ul o] 4] 0 0 -78 0 0

0

a4 t7 ul 0 0 0 0 |-71|-75

Fig.6: Computing Activity Patterns from Calibration Data. At time point ¢,
mobile device receives RSSI values from two sensors (s1,s11) that are placed in
activity a1, as well as one sensor (sz) that are placed in activity as. No signal
received from activity az and ay4. According to the definition of a activity pattern,
pattern here is [2, 1, 0, 0].

Definition 4. For an activity a, we define an activity pattern m(a) as the set
containing one element ko for each o/ € A(p). Here kq denotes the number of
Bluetooth sensors at the location of activity o' that are within the radio detection
range of the measurement device when performing activity a. Then the set of
activity patterns of the process p is M(p) = {m(a)|a € A(p)}.

Figure 6 also shows activity pattern examples. The activity pattern m(a;) =
[2,0,0,0] is an ideal case: when performing the activity a;, only the two Blue-
tooth sensors at the location of activity a; are within the mobile device’s radio
detection range. Sensors at locations of other activities are not in the detecting
range, denoted by 0. However, in practice there are often overlapping signals.
For example, the activity pattern m(az) = [1,2,1,0] means that while we are
performing activity as, besides the two sensors of activity as, one sensor at the
location of activity a; and one sensor at the location of activity as are in the
detection range as well.

In addition, for each activity, all training data that is labeled with this activity
is used to compute other parameters like the activity-specific RSSI mean, average
performance and tolerance range.
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4.2 Analytical Approach to Extract Process Model

After we obtain the set of activity patterns M (p) from the calibration, measure-
ment can be started. During the measurement, the server’s analytical process
applies activity pattern matching on each measurement tuple that is transferred
from the mobile devices. Each measurement tuple will be firstly converted into
an activity pattern m; that is defined in Section 4.1, then be compared with
M(p) to determine the activity. For those ambiguous tuples that match more
than one activity class, extra parameters computed in the calibration are used
to determine the best matching activity class for the tuple.

When measurement is finished, we will get a list of determined activities Ap
and further analysis can be conducted (as shown in Figure 7) to extract process
models. Firstly, the server applies a window over a few successive activities to
get the most frequently occurring activity. This eliminates noisy activity detec-
tions and gets the list of calibrated activities A¢. Very often noisy activities
are recognised when switching to a new activity momentarily, and back to the
original activity in the next data point, for example the determined activity 3
at time point t7 in Figure 7. Here, we assume this type of noise contains less
than two tuples. Secondly, based on calibrated activity list Ac, we determine
the beginning and ending of the activities and output changes of activities Ag: 1
or 2 in this example indicate the beginning of activity 1 and activity 2, 0 means
no change, -1 indicates no activities or constant change between activities.

i Tim Determined Calibrated Activity begin & Service Time
Activity Apfi] Activity Acfi] end Asfi]
1 u 1 1 1
t2-t11
2 t2 1 1 0
3 t3 2 2 <2> 2
4 t4 2 2 0
5 t6 2 2 0 t8-t3
6 t7 3 <1> 2 0
718 2 2 0

Fig.7: Analytical approach for process model extraction. Step <1>: get the
most frequently occurring activity in the three successive activities. Step <2>:
determine the beginning and ending of the activities.

At last, we computed average service times and transition probabilities to
model the process. For an activity ¢ € {1,...,n} that occurred m; times in the
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data, the average service time is:
m;
Si = l/mide (1)
j=1

where d; ; is the duration of the jth occurrence of activity i. We then com-
pute a matrix of how many (directed) transitions occurred between the activities:
T;,; = number of transitions from activity ¢ to activity j. From this we can cal-
culate transition probabilities by scaling them with the total number of outgoing
transitions from an activity. That is, the transition probability F; ; from i to j
is:

Pij="T;/ Y Tix (2)
k=1

4.3 Accuracy

The accuracy of the extracted process depends on the length of the measurement
(amount of data available), as well as the accuracy of the indoor localization
method. As mentioned, we are interested in location-based service processes
where the locations are not very close together (typically in different rooms) and
the service times are reasonably large (several minutes or more).

Our inexpensive localization method is limited to discrete locations at least
about 2 meters apart, and the service times can have an error of up to 24 seconds
(both entry and exit from a location can be detected up to 24 seconds too late,
as mentioned above). In practice this localization method appears to be fairly
good at detecting every activity (if they are minutes long) and not detecting any
spurious wrong activities; thus usually it does not cause errors in the transition
probabilities.

The estimated service time for each activity is simply the average of all
measured service times (including the up to 24-second error). If there is a lot of
variation in the actual service times, our process model hides this and the average
may not be representative. However, it would also be possible to examine the
distribution of the measured service times at each activity.

The amount of variation in the actual process also affects the estimated
transition probabilities, especially if the measurement is short. For instance, rare
transitions (say, a special case of a service process that is encountered rarely)
might not be observed at all in a short measurement. However, this might not
be important if the purpose of process extraction is to analyse or optimise the
common cases. The most important factor in this accuracy is how many times
each transition was observed in the data.

5 Laboratory Case Study

We implemented the data acquisition system for Android smartphones, and eval-
uated the system and the analytical approach for process model extraction in a
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laboratory case study. We put 17 Bluetooth sensors in 8 locations in the computer
science building in Aalto University to represent 9 activities. The Bluetooth sen-
sors used in this study were built with JY-MCU Bluetooth wireless serial port
modules?.

Figure 8 shows the placement of the sensors in the process measurement.
As discussed in previous sections, the performances of sensors vary and they
are neither stable nor consistent. In order to find the optimal placement of the
sensors, we conducted several experiments and found out that, the usage of two
sensors to represent one activity helps improve the process measurement results.
In the case study, we wrote down the actual process on paper by hand so that
we could compare results. The process measurement results are presented in
Figure 9a and Figure 9b.

1 5 7
11

2 4
17 18
1 8
15 20
9 16
6 14
10 13

rTl | _ \ Activity  Sensors

w L N N R W N

Fig. 8: Case study floor plan: sensor placement for process measurement

Figure 9a shows the results of using a proximity detection approach and with-
out calibration. It has two problems: first, when the locations of two activities
are relatively close to each other, this approach will lead to noisy fluctuations;
second, when there is only a very short interval between two activities, it won’t
be accurate enough to determine the interval. Figure 9b demonstrates the ap-
plication of the analytical approach illustrated in Section 4.

By comparing with the actual process, the result shows that the analytical
approach for process model extraction detected the correct activity in 93% of the
data points. It other words, the system fulfils the demands of collecting precise
process data for accurate process modelling.

2 https:/ /core-electronics.com.au/attachments/guides /Product-User-Guide-JY-
MCU-Bluetooth-UART-R1-0.pdf
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Activity No.

Measurement with proximity detection approach

—— Actual Process
Detected Process

150
Time seriers

(a) Activity recognition results without calibration. Generated activity sequence ex-
ample is: 11111 22222 11111 99999 8888, which has no intervals between activities.

Activity No.

Measurement with customized approach

— Actual Process
Detected Process

50

100

150
Time seriers

200

(b) Activity recognition results with calibration. Generated activity sequence example
is: 11110 22222 11110 99990 8888, which recognises the intervals between activities.

Fig.9: Evaluation of automated process measurement results. Actual activity
sequence in this example is: 11100 22200 11100 99990 8888.
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Figure 10 presents the process model captured from the case study. The av-
erage service times and transition probabilities are calculated from the analysed
data (the beginning and end of each occurrence of an activity) with Equation (1).
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7 Activit{,ﬁ =Y r 20%

6

Activity N S~ . 50% 1
@& . @

- . \ 7 / 2 y
7 Activity . p ZO%K }33.53% > \\_//
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Fig. 10: Model of case study’s process, which is extracted by using the automated
process modelling system

6 Empirical Attestation

In a children’s dental clinic (YoungTeeth) in Tampere, Finland, we evaluated
an earlier version of our system, which did not send the location data to a cen-
tralised server: instead we needed to collect the data manually from each mobile
device. However, the analysis of the data to extract the process model was es-
sentially the same as given in Section 4. The dental care service process included
patients (children and adolescents) and four professional groups (dentists, den-
tal hygienists, dental nurses, and receptionists). Figure 11 presents the original
service model generated by the data collected from the patients, and the model
generated by the data from the personnel differs in that the process loops to the
start point. "Hygiene check” is the oral health check performed by a hygienist,
”Dentist” is the diagnosis made by a dentist, ”Wait” is the time the patient
needs to wait at reception, and ”Recall” means the calling system that invite
children to the clinic.

After the original process model was created and calculated, possible im-
provements were analysed. In the original service process, patients visit hygiene
check, if health issues like tooth decay are discovered, then patients have to visit
the dentist twice for diagnostics and treatment. In order for patients to get an
oral health diagnosis and treatment plan during one visit, a multi-room dental
service model were proposed. The general idea of the optimised improvement is
that dental hygienists consult dentists if special expertise is needed. This opti-
mised process (see Fig. 12 ) was piloted 10 days in the same clinic to evaluate the
improvements. Patients who do not need to consult the dentist visited Hygiene
check 3, and others follow Dentist consultation procedure: hygienist performs
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End End
— Reception —

Recall

Fig.11: The original service process of a children’s dental clinic (YoungTeeth)
in Tampere Finland. This model is generated from the data collected from the
patients.

the oral health check (Hygiene check 1), the dentist is called if needed (Dentist),
then hygienist finish the care (Hygiene check 2).

Dentist consultation

Start .
— Reception

Fig.12: The optimised process improvement proposed for a children’s dental
clinic (YoungTeeth) in Tampere Finland.

The optimised process was measured and data was collected and analysed for
future use. In this case, we captured a stable service model from five complete
measurements of the whole process. However, the required measurement times
in different service processes vary with the complexity of the process (approxi-
mately 5-50). According to the analysis, the process performance was increased
24%.

The process model that was extracted in this case study also allowed a mea-
surement of the maximum load of the professionals (work activity time divided
by total time per person). In this case the load did not exceed 75%, which has
been considered critical in other related research cases. Furthermore, this model
was used as a basis of process measurement analysis in [11].
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7 Conclusions

Process modelling is a critical factor in improving service productivity improve-
ment and implementing service intelligence, and it is inevitable that we should
consider service innovation from the process model viewpoint. However, how
to collect data from services has been a problem: traditional approaches that
construct process models from scratch often requires field experts’ involvement,
which is difficult, expensive and time-consuming. An alternative way that mines
process models from event logs is suitable for modelling domain-specific work-
flows, but approaches that are capable of picturing more generic processes are
lacking.

This work aims to simplify the procedure of automated process modelling
and focuses on modelling generic service processes that are location-aware. We
proposed an approach based on wireless indoor positioning, which collects the
minimum amount of location based process data and models service processes.
Bluetooth technique was selected because it is inexpensive, easy to implement
and accurate enough for measuring service processes. The automated process
modelling system has a mobile and a server side, the process data acquisition
module of the mobile side is responsible for calibrating the process measurement
and collecting real-time process event data. The analytical module of the server
analyses calibration data, computes activity patterns and sensor performance
parameters, and extracts service process models from acquired measurement
data. Instead of using unstable RSSI values directly, our approach uses numeric
vector of activity patterns that is converted from RSSI values. The approach is
accurate enough for current objectives. In further research, we will study more
accurate positioning techniques and explore whether very precise locations help
improve location-based activity recognition.

In the case study, we examined the performance of the process data acquisi-
tion system and the analytical approach. The results of the case study demon-
strates that the system fulfils the demand of collecting the minimum amount of
process data for accurate process modelling. In addition, the presented approach
has been tested and used in a children’s dental care clinic in Tampere, Finland.
This confirmed the feasibility of the approach for process modelling, and the
extracted models were used in process performance optimisation.

Application status of the current system is limited to relatively ideal settings:
one location represents only one activity. Besides, the system requires that two
locations have a certain distance (minimum 2 meters) away from each other. As
illustrated in our analytical approach, we eliminate noisy activities that have
less than two tuples, hence, the shortest activity that can be detected has to
have at least two tuples (about 24 seconds). However, this does not limit the
application of our approach in service process measurement since activities of
service process usually last more than 24 seconds. The current system is appli-
cable for analysing the process of a single user, but does not have collaborative
process modelling support yet. Therefore, our objective for future research is to
implement automated process modelling for a team collaboration process, and
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moreover, to improve the accuracy of process activity recognition with the help
of additional data, for example, accelerometer data.
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