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2 University of Waterloo trefler@cs.waterloo.ca

Abstract. The AODV protocol is used to establish routes in a mobile,
ad-hoc network (MANET). The protocol must operate in an adversar-
ial environment where network connections and nodes can be added or
removed at any point. While the ability to establish routes is best-effort
under these conditions, the protocol is required to ensure that no rout-
ing loops are ever formed. AODVv2 is currently under development at
the IETF, we focus attention on version 04. We detail two scenarios that
show how routing loops may form in AODVv2 routing tables. The second
scenario demonstrates a problem with the route table update performed
on a Broken route entry. Our solution to this problem has been incorpo-
rated by the protocol designers into AODVv2, version 05. With the fix
in place, we present an inductive and compositional proof showing that
the corrected core protocol is loop-free for all valid configurations.

1 Introduction

The AODV (“Ad-Hoc On-Demand Distance Vector”) protocol family is under
development by the IETF MANET (Mobile, Ad-Hoc Networking) group. Its cur-
rent form is AODVv23, which has evolved from the earlier DYMO4 and AODV5

protocols. As stated in the protocol description, AODVv2 “is intended for use
by mobile routers in wireless, multihop networks. AODVv2 determines unicast
routes among AODVv2 routers within the network in an on-demand fashion,
offering rapid convergence in dynamic topologies.” AODVv2 is still evolving; our
work focuses on the recent version 04 (which we refer to as AODVv2-04), pub-
lished in July 2014. Subsequently, AODVv2-05 was issued in October of 2014,
and AODVv2-06 in December 2014.
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The environment in which AODVv2 operates is challenging, as network con-
nections and nodes may be added or removed at any point. In such a setting,
routes are established in a best-effort mode. However, the protocol is required
to enforce a key safety property, that there are no routing loops in any reach-
able global state. A routing loop is formed when the next-hop entries in routing
tables are connected in a cyclic manner (E.g., node A has next-hop B; node B
has next-hop C; and node C has next-hop A).

We construct a formal, inductive proof that an abstract model of the protocol
has no routing loops. Such a proof has utility, even though AODVv2 is still not
finalized. A proof elucidates broad conditions under which loop-freedom can be
guaranteed; those conditions can then be taken into account as the protocol is
refined, and any fixes necessary can be incorporated quickly and with relatively
little cost. Indeed, in the course of our analysis, we found that AODVv2-04
allows routing loops to form under certain sequences of actions, we discuss those
scenarios in Section 1.2. The first example illustrates that if instance-specific
timing constants are not set correctly, then routing loops may form. The second
example is more serious since it can occur even if the protocol parameters are
set correctly. This problem was quickly acknowledged by the protocol designers
and corrected, based on our input, for version 05 of AODVv2 (cf. [14], Appendix
C: Changes since revision ...-04.txt).

Our model aims to capture the core of the AODVv2 protocol by abstracting
away some detail and by leaving out optional features. The main abstraction
is that timer-driven actions are replaced either with non-determinism or with
global predicate guards. For instance, our model allows a route entry to be
invalidated at any point, while the protocol permits this only after timer expira-
tion. In another instance, routes marked as Expired are expunged (i.e., removed
completely) only after there is no activity for at least MAX_SEQNUM_LIFETIME

seconds. Note that MAX_SEQNUM_LIFETIME is one of several instance specific con-
stants in the protocol. Our model abstracts away from such constants by replac-
ing the time-based preconditions with global network predicates. The predicates
abstract nicely from the specifics of network structure, delays and processing
power, which must go into determining a correct setting for these symbolic con-
stants.

The full AODVv2 protocol has mechanisms that allow a wide variety of
metrics to determine the cost of a route. Our model considers only the hopcount
metric, i.e. the metric that counts the number of network edge hops between the
origin node of a route and the target node of a route. Hop count is an important
metric used in practice, and AODVv2 correctness requires at a minimum that the
protocol behave correctly with the hop count metric. Our proof can be adapted
to other cost metrics, where the cost of a link is greater than 0, and cost along a
path is additive. Within these limits, the model exhibits all of the actual protocol
computations, and more: hence, any proof that the model is correct shows also
that the protocol, under the stated restrictions, is correct.

To summarize, our work makes two contributions: (1) we exhibit scenarios
where AODVv2-04 allows routing loops to form, and suggest a protocol fix,
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which has been adopted by the designers, and (2) we construct a formal model
of the protocol and an inductive proof showing that the corrected core protocol
ensures loop freedom. This proof is interesting in its treatment of adversarial
actions and its use of compositional reasoning.

1.1 Protocol Sketch

We informally sketch the main features of the protocol before proceeding to
the proof. The model we use is given in Section 3. The model fixes an origin
node, O, and a target node, T . The protocol establishes a route from O to
T in two phases. The first phase is initiated by O, and consists of flooding
a RREQ (route request) message through the network6. Every node receiving
this RREQ message maintains an “origin route”, next-hop entry which points
to the neighboring node from which it has received the best route so far from
O, i.e., (roughly) the (first) path with the least cost. Note that a node may
receive multiple copies of the RREQ message sent from O, through different
paths. Whenever the target node T receives a better RREQ route from O, it
responds with an RREP (route reply) message. This message is not flooded: it
follows (backwards) the path to O that has been established by the origin route
entries. With fixed network connectivity and no message losses, this procedure
converges (under mild conditions) to a least cost path from O to T . Under the
network disruptions that are expected in the MANET model, though, there is no
guarantee of convergence. Under adversarial control of the network and message
transmission, the only property that is required of the protocol is that it should
never form a global state which has a routing loop: i.e., a state where the set of
origin route entries form a cycle, such as where node A has next-hop B, B has
next-hop C, and C has next-hop A.

The tricky part of the analysis has to do with the case of “broken” route
entries, which are created when links in the network fail. If A has next-hop B
and the A−B link fails, then the entry at A is marked as Broken. However, new
copies of the RREQ message from O may arrive at A after the breakage. When
should a route from one of those messages be accepted at A? Accepting any route
at all – which makes sense in a way: an unbroken route, however bad, is surely
preferable to a broken one – may lead to a routing loop, as shown in the second
scenario below. This scenario was possible in version 04 of the protocol, and it
was discovered by us in the attempt to construct a proof of loop-freedom7. The

6 A data structure, the RREQ Table, is used in AODVv2-04 to control the flooding.
Appendices A.1 and A.2.2 of AODVv2-04 describe precisely how the table is used: an
incoming RREQ message is used to update a route entry, then the message is checked
against the table to determine if it should be regenerated and sent to neighboring
nodes. (We have confirmed this order of actions with the protocol authors, to resolve
a slight ambiguity in the main text.) Hence, the table does not influence route
updates; it may only stop the regeneration of RREQs, which is already included in
our model as message loss. Therefore, we do not model the table.

7 From Section 6.3 of AODVv2-04, one case of the condition for acceptance of a
new route is “((Route.State == Broken) && LoopFree(RteMsg, Route))”. The

3



partial proof pointed to the condition “accept any route that is not worse than
the current broken route” as a possible resolution. We confirm that this is indeed
a correct resolution through the formal proof given next. That resolution has also
been accepted by the authors of AODVv2 and included starting with revision 05
of AODVv2 (cf. [14], Appendix C: Changes since revision ...-04.txt).

1.2 Loop Formation Scenarios

The first scenario creates a loop when the timer MAX_SEQNUM_LIFETIME is not set
to a large enough value. The second creates a loop when any route is accepted in
place of a broken one. Reading through the scenarios helps build intuition about
how the protocol operates, which is helpful in understanding the proofs.

Poor choice of timer values. The AODVv2 protocol has several actions that are
triggers by symbolic time constants. A protocol implementer has to give concrete
values to these constants, a very difficult decision, as the correct values depend
on the topology of the network, processing speeds, and transmission delays. As
shown in the scenario below, a routing loop may result if the constants are
inadvertently not set properly. The loop prevents RREP messages that are sent
back from T , the target node, from reaching O, the originating node. As a result,
no messages can be transferred from O to T .

We should note that this is not an error in the protocol – with a correct
choice of constants, the loop will not occur. We model the time-based actions
as guarded commands with an untimed guard over the network state. The proof
shows that the model is loop-free. The modeling, therefore, helps to narrow down
the choice of time constants: the values chosen for a network instance should be
such that the guard condition is guaranteed to hold when the timers expire.

O H' H T
1 (1) 1 (1) 1 (1)

1 (10)

Fig. 1. Network: Early Expunge Scenario. Number by edge indicates hop-count, num-
ber in brackets indicates transmission delay in time units.

The network is fixed as shown in Figure 1. The scenario is as follows:

predicate LoopFree is defined in Section 5.6 as “LoopFree (R1, R2) is TRUE

when Cost(R2) <= (Cost(R1) + 1)”. Thus, LoopFree(RteMsg,Route) is true iff
Cost(Route) <= (Cost(RteMsg) + 1). This allows the cost of the route in the in-
coming message, RteMsg, to be arbitrarily larger than the cost of the stored route,
Route, if the stored route is in a Broken state.
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1. An RREQ message created by O travels along the path O; H’; H; T. As a
result, the origin route entries at these nodes have hop counts O=0, H’=1,
H=2, T=3. A copy of the RREQ message remains undelivered on the link
H −H ′.

2. The route entry at H’ is expired and then expunged.
This is the critical step. In AODVv2-04, timer conditions say when a route
must be expunged. For non-timed routes, this happens (ref. Section 6.3)
when (Current_Time - Route.LastUsed)>= MAX_SEQNUM_LIFETIME. How-
ever, the protocol (ref. Section 6.3) also allows routes to be expunged without
reference to MAX_SEQNUM_LIFETIME: an Expired route may be expunged at
any time (least recently used first). If this constant is set to too low a value,
there will be messages within the network which are still undelivered. In
the network of Figure 1, if MAX_SEQNUM_LIFETIME is set to 4 units, and the
H − H ′ path (a single link is shown but it could be a path through inter-
mediate nodes) has the delay shown in the figure, the protocol will force the
routing entry at H to be expunged while there is an undelivered RREQ. The
correct value depends on many factors, including the size of the network, the
length of paths in the network, and processing speeds and buffering at the
nodes. In the model, we abstract this to a global predicate which must be
met before the expunge action can occur.

3. The undelivered RREQ from H now reaches H’. Since H’ has no entry, it
accepts this route; its next-hop is now H.

4. H’ sends a RREQ to H with hopcount 3. Since H already has an entry
with a better hopcount, it rejects this message. At this point, there are no
undelivered RREQ messages. The H’-H entries form a routing loop.

Broken Routes. A route entry at a node is marked as Broken if the node is made
aware of a break in connectivity. The following scenario shows that a loop may
form if a broken route is replaced by any valid route (as may seem reasonable,
even if the new route has a higher cost).

O A B T
1 1 1

1

X
1

100

Fig. 2. Network: Broken Route Scenario. Number over edge indicates hop-count (cost);
red (slanted) line indicates break.

1. A RREQ message generated at O sets up the route O(0);X(1);A(2);B(3);T(4).
The numbers in () are the hopcounts for the origin route entries at each node.
A RREQ message remains undelivered on the lower A-B link.
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2. The link X-A breaks, causing the route at A to be marked as Broken. After
the link breaks, both X and A are required to send out RERR messages
to their neighbors. We assume that those messages are lost and therefore
neither O nor B is notified of the break.

3. A now receives a long route from O, with cost 100. This is the critical point.
In version 04 of AODVv2, any valid route is acceptable in place of a broken
one (see footnote 7 for details on why this is permitted), so this route will
be accepted. The route entry at A is now valid and has hopcount 100.

4. A now has a non-broken route. It receives the previously undelivered RREQ
from B, which has cost 4. As this cost is less than that of its current route
cost (i.e., 100), A switches its next-hop to B. Node A then sends an RREQ
to B, but that has higher cost than B’s current route, and is rejected. No
further RREQ messages remain in the network, so the A-B loop is stable.

2 Proof of Loop Freedom

The proof method is standard: we identify a suitable assertion and prove that it
is an inductive invariant by showing that it is preserved by every action. How-
ever, the proof structure is more interesting: (1) we explicitly model network
disruptions as adversarial actions and (2) the induction proof is localized to the
neighborhood of an arbitrarily chosen network edge; thus, it implicitly uses sym-
metry and is compositional in nature. Some aspects of the model are especially
important for the proof (see Section 3 for more details of the model):

1. There is an underlying connectivity graph of nodes. We assume that the
graph is finite but of arbitrary size. Nodes and links may fail, and new links
can be formed at any point. A node can also be restarted after failure.

2. Any link change and the reaction to it happens atomically with respect to
the actions of the protocol.

3. We fix an arbitrary origin node, O, and an arbitrary target node, T , such
that T differs from O. Protocol analysis is then based on the discovery and
maintenance of bidirectional routes from O to T .

4. A route entry has a sequence number, a hop-count, and a state8. We say that
an entry x is “better” than an entry y if (seqx,−hopx) is lexicographically
strictly greater than (seqy,−hopy). I.e., if seqx > seqy or if seqx = seqy
and hopx < hopy. In this situation, we also say that y is “worse” than x.
We write this relationship as y ≺ x. We treat sequence numbers as nat-
ural numbers; i.e., we do not model wrap-around effects. In AODV-v04, a
node has its own sequence number generator, with the range [0 . . . 65535]. A
new sequence number is assigned for a fresh route request/response. As the
numbers are assigned per node and the protocol separates routing entries by
(origin, target), the AODVv2 drafts implicitly assume that comparison of a
route with a wrap-around successor route is very unlikely.

8 In AODVv2-04, an entry is also labeled with an (origin, target) pair. As the model
fixes the origin and target nodes, we omit this label.

6



2.1 Proof Summary

We consider first the origin route established through RREQ messages, and show
that it cannot have a routing loop. To avoid case-splitting, we suppose that there
is a dummy route to O at O, given by hopcount 0 and the sequence number of
O. The proof hinges on showing the following lemma, which gives the desired
theorem below.

Lemma 1 The following is an inductive invariant: for any node H, and for any
node G: if H has a route entry to O with next hop G, then G has a route entry
to O that is better than the entry at H.

Theorem 1 The protocol never reaches a state with a routing loop formed from
origin route entries.

Proof: The proof is by contradiction. Suppose that there is a reachable protocol
state with a routing loop induced by the entries for origin routes. Pick a node,
say H, on the loop other than O (there must be one such) and go around the
loop from H in the next-hop direction. By Lemma 1, the route entries along this
circuit improve strictly at each hop. By the transitivity of ≺, the route entry at
H is strictly worse than the route entry at H, a contradiction. EndProof.

2.2 The Main Proof

The bulk of the proof lies in establishing the invariance condition in Lemma
1. We do so by induction: i.e., we show that the statement holds in the initial
protocol configuration, and that it is preserved by protocol actions and by dy-
namic network changes. For brevity, we use “route” in place of “route entry”
throughout; it should be understood that route does not refer to a path con-
necting several nodes together. We require an auxiliary lemma, given below. It
states that routes in RREQ/RREP messages on outgoing channels adjacent to
a node are no better than the corresponding route at that node.

Lemma 2 The following is an inductive invariant:

(a) For any node H, the route to O in any RREQ message for (O, T ) on any
outgoing link from H is not better than the route for O at H.

(b) For any node H, the route to T in any RREP message for (O, T ) on the
link from H to its next-hop on the route to O is not better than the route for
T at H.

Proof of Lemma 2(a): The claim holds trivially at the initial state, as all con-
nection links are empty.

Consider a transition from global state s to global state t, and suppose that
the claim holds at s. To show that it holds for t, consider a node H (other than
O) in t. The proof is by case analysis on the transition which takes the system
from s to t.
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Consider first the normal operations. Most cases are straightforward. If the
transition is for a node other than H, it only affects the neighborhood of H if
a message is removed from an outgoing link of H; in this case, the invariant is
trivially preserved. Changes to the route state of H (idle-route or expire-route)
do not change any routes. Expunging the route (expunge-route) preserves the
invariant as its guard requires all outgoing channels from H to be empty. The
generation of a RREQ (rreq-gen) can only be done by H if it is O: in that case
the route generated is equal to the (dummy) route for O at O.

The interesting case is where the route at H is updated through a RREQ
or RREP message (rreq-recv, rrep-recv). Let x be the route at H to O in s and
let y be its route in t. Then either y � x (in the normal case) or y � x (if
x is Broken). Now for every route r in a RREQ message on the link in s, the
inductive hypotheses requires that x � r, so that y � r by transitivity. Every
new RREQ message generated by H through rreq-recv carries the route y. This
re-establishes the invariant. Processing an RERR message may only invalidate
but not change the origin route.

We now consider the dynamic changes. Dropping a message, and removing
a node or a link trivially preserves the invariant as no routes are changed. The
addition of a link to H establishes the invariant for that link, as the link is
empty. The interesting case is if H is a recovered node (recover-node). By the
pre-condition for recovery (see the model detailed in the next sections), all of
H’s outgoing channels are empty, so the invariant holds. EndProof.

The proof for part (b) is essentially identical, as the processing of RREQ
messages in rreq-recv and RREP messages in rrep-recv is nearly symmetric.

Proof of Lemma 1: The claim holds trivially at the initial state, as all routes
are undefined. Consider a transition from global state s to global state t, and
suppose that the claim holds at s. We show that it holds at t by case analysis
on the transition.

We first consider the normal protocol actions. In state t, consider node H,
and a node G such that the route to O from H has next-hop G. We have to show
that G has a route better than the route at H. Consider the possible actions.

(1) The action does not involve either H or G. So there is no change in the
routes at the two nodes. By assumption, the claim holds for (G,H) in s, so it
continues to hold in t.

(2) The action is one of G. Modifications to route state (idle-route, expire-
route) do not affect routes, so the claim continues to hold from the assumption
for s. The action cannot be an expunge, as its guard is not met in s, as the
entry for H in s has next-hop G. Processing of RERR messages does not change
the route at G (although its state may change). The interesting case is where
G updates its route to O from rG in s to r′G in t by processing an RREQ or
an RREP message. By the protocol, r′G � rG. Since r′H = rH , and rG � rH by
assumption for s, we get that r′G � r′H in t.

(3) The action is one of H. Modifications to route state (idle-route, expire-
route) do not affect routes, so the invariant is preserved from s. The action
cannot be an expunge, as H has an entry in t. The interesting case is if H
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updates its route to O through a rreq-recv for (O, T ) or through a rrep-recv for
(X,O), where X is some node. Since H points to G in t, the updating message
must be from G. Say this message carries a route r, and let rG be the route to
O at G in s. By Lemma 2, regardless of the message type (RREQ or RREP),
at state s, rG � r. The new route at H is obtained from r by incrementing its
hopcount, so it is worse than r (i.e., r′H ≺ r). The route in G is unchanged in the
transition (i.e., r′G = rG). Hence, we have r′G = rG � r � r′H . By transitivity,
r′G � r′H , as is desired. (Note the crucial role played by the hopcount increment
at H.) Actions which process RERR messages do not change the route at H, so
they preserve the invariant.

We now consider dynamic changes which affect H and G.
(4) Dropping a message from a link, and removing a link trivially preserves

the invariant as no routes are changed. (Note that the link between H and G
may be broken by the transition, yet H’s route entry still points to G in t.)

(5) The action cannot be the addition or restart of H, as the newly added H
would not have an origin route in t. The action may not add G as a fresh node
either, as the next-hop entry for G exists for H in s.

(6) The action cannot be the restart of G, as its precondition requires there
to be no entries which have G as a next-hop, and H has such an entry in s.

(7) The action cannot be the removal of nodes G or H, as we are only stating
the claim where both nodes exist in the network at t. (In t, there may be a node
H ′ which has a next-hop entry for G′, but G′ is no longer in the network at t.
Such a (G′, H ′) pair is not part of the invariant claim.) EndProof.

RREP Invariants RREP (route response) messages are generated whenever a
new RREQ message reaches its target. They follow a single path from target to
source which is set up by the origin route entries. I.e., unlike RREQs, the RREP
messages do not flood the network. The RREP messages create “target route”
entries at each node, which determine a path from that node to the target, T .
However, the origin route path at the point an RREP message is created may
change as the protocol progresses and intermediate nodes receive better routes.
It may also change as the result of network disruptions and rearrangements.
Hence, it is not obvious that RREP messages do not induce a routing loop in
the target route entries. The proof that the target routes created by RREP
messages is loop-free is similar in structure to the RREP loop-freedom proof.
This is possible as the protocol is nearly symmetric in its handling of RREQ
and RREP messages. We therefore omit this proof.

3 AODVv2 Model

We describe the protocol model from the viewpoint of a node with name H.

Data Structures. A node maintains a route table route, indexed by nodes. The
route to a node may be undefined, which we denote by ⊥. If defined, a route to
a node is a pair: (n, e), where n is the next-hop node and e is its route entry. An

9



entry is of the form (s, h, x), where s is a sequence number, h is the hopcount
(or, more generally, the cost), and x is the state of the route (one of Active,
Idle, Expired, or Broken). It is assumed that s and h are non-negative numbers.
In addition, a node maintains its own sequence number, referred to as seq. We
use standard notation to refer to these components, for instance, n.route[O].e.h
refers to the hopcount of the route entry to node O at node n.

Messages. The protocol has three types of messages: RREQ (route request),
RREP (route reply) and RERR (route error). Each message has the following
components: h (a hopcount), tlv = (sO, sT ) (sequence numbers for origin and
target, possibly undefined), and (O, T ) – the origin and target pair. We write a
message as, for example, RREQ(h, (sO, sT ), (O, T )).

Initial State. In its initial state, a node has undefined origin and target routes,
and sequence number 0.

Protocol Actions. Here, we list the actions taken during normal operation. The
actions are atomic but may occur at any time. In the protocol, actions such as
expire-route are based on timers, to ensure that they do not happen too often.
Since we are concerned with correctness, not performance, we replace such uses
of timing by non-determinism. There are some parts of the protocol where timed
actions are used as a proxy for global conditions. In the model, we replace such
timers with global guards.

In the description below, we have also made certain actions (e.g., processing
of RERRs) have more effect, or be more often enabled, than the actual protocol
recommends. This can only result in the model having more executions than the
actual protocol, so any invariants shown for the model also hold for the protocol.

The notation y >> x expresses that the route in the route message y is
preferable to the route table entry x. From the AODVv2 protocol description,
this is true if (1) y.s > x.s, or if (2) y.s = x.s, and either (a) y.h+1 < x.h, or (b)
x is in the Broken state and y.h+1 ≤ x.h. (Term (b) is the correction introduced
in AODVv2-05 based on the second loop-formation scenario from Section 1.2.)

We introduce the global predicate AllClear, which replaces the time-driven
actions based on MAX_SEQNUM_LIFETIME. The predicate AllClear(H) holds iff (1)
there are no messages in any channel of the network with origin or target being
H, and (2) all outgoing channels from H are empty, and (3) no other node has
an Active route entry with next-hop H. This global condition is not present in
the actual protocol, as it cannot be checked locally. The protocol instead defines
a symbolic time constant, MAX_SEQNUM_LIFETIME – a node waits until that much
time has expired before expunging an entry. The protocol description does not
specify how this value is to be chosen for a network instance: the value should,
clearly, depend on factors such as the size of the network, the link delays, and
the processing power of a node. The global condition defined here abstracts from
these considerations: the time value should be set so that the global condition
is guaranteed to be true after that much time has elapsed.

skip do nothing
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expunge-route remove route if its state is Expired, and AllClear(H) holds.
idle-route change route state to Idle if Active.
expire-route change route state to Expired if Idle.
rreq-gen(T) This generates an RREQ (request) message to node T .

true ==>

let msg = RREQ(h=0, (sO=H.seq+1, sT=H.route[T].e.s), (H,T)) in

H.seq := H.seq+1;

multicast(msg)

rreq-recv(RREQ(m),K) This action processes an RREQ message m = (h, (sO, sT ), (O, T ))
from neighbor K. It is guarded by the condition that the route in m is better
than the origin route at node H.

(m.sO,m.h,Active) >> H.route[O].e ==> // m has a better route to the origin

// update the origin route

H.route[O] := (K,(m.sO,m.h+1),Active);

// propagate or reply as appropriate

if (H=T) then // H is the target node: reply with RREP

let reply = RREP(h=0,(sO=m.sO,sT=H.seq+1), (O,T)) in

H.seq := H.seq+1; // update local sequence number

unicast(reply, K) // send only to K

else // H is an intermediate node: propagate

let msg = RREQ(m.h+1, m.tlv,(O,T)) in

multicast(msg) // send to all neighbors

endif

rrep-recv(RREP(m),K) This action processes a reply (RREP) message m =
(h, (sO, sT ), (O, T )) from neighbor K if it contains a better target route.

(m.sT,m.h,Active) >> H.route[T].e ==> // m has better route to the target

// update the target route

H.route[T] := (K,(m.sT,m.h+1),Active);

// propagate as appropriate

if (H = O) then // H is the origin node: do nothing

skip

else // H is an intermediate node

if (H.route[O] is defined) then // propagate RREP

let replymsg = RREP(m.h+1, m.tlv, (O,T)) in

unicast(replymsg, H.route[O].n)

else // generate error RERR

let errormsg = RERR(h=0,tlv=(_,_)) in

unicast(errormsg,K)

endif

rerr-recv(RERR(m),K) This action processes an error (RERR) message from
neighbor K. Mark any routes passing through K as broken, and propagate
the error. This is more permissive than the protocol in marking routes as
Broken: in the protocol, there are other fields in the RERR message which
H can use to distinguish whether the error message from K pertains to an
origin or a target route.

true ==>

for all nodes w:
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if (H.route[w].n = K) then

H.route[w].e.x := Broken; // mark route as broken.

multicast(RERR(m)) // propagate RERR to all neighbors

endif

Dynamic Actions. We now describe protocol actions taken in response to dy-
namic changes. In our model the adversary may add, recover, or delete nodes,
and may add or delete edges. Edges may be deleted by the adversary at any
point during protocol execution. However, the adversary may delete a node only
if the node is not linked to any edge. Below we give the detailed response that
the protocol takes to adversarial actions.

remove-node(H) Do nothing.
new-node(H) If H is a new node, it starts at its initial state, and all outgoing

channels are empty.
recover-node(H) H is a recovered node. It does not re-join the protocol until

the condition AllClear(H) holds. This is the same global guard as that for
expunge-route. That is not a coincidence, the two conditions should be the
same, as shown by the first loop-formation scenario from Section 1.2. The
actual AODVv2-04 protocol says that a node can re-join the protocol once
MAX_SEQNUM_LIFETIME seconds have elapsed.

remove-link(H,K) Mark any routes through K as being broken, and send
RERR messages accordingly

true ==>

for all nodes w:

if (H.route[w].n = K) then

H.route[w].e.x := Broken; // mark route as broken.

multicast(RERR(m)) // propagate RERR to all neighbors

endif

add-link(H,K) new link from H to K established. Do nothing.

4 Related Work and Conclusions

There is a long history of research on inductive and compositional analysis ap-
plied to network protocols: the work in [13,15,3,16,4] is representative. The con-
tribution of this work is to apply these ideas to the verification of a protocol
operating under dynamic, adversarial network changes. Our proof technique is
standard (cf.[4]): we postulate an assertion and show that it is inductive by prov-
ing that it is preserved by every action. However, there are interesting aspects to
the structure of the proof. Most importantly, our proof technique is ‘local’, that
is, it is applied to a generic protocol node (or edge), and considers interference
from only the nodes in the neighborhood of that node (or edge) during protocol
execution. Hence, the method is compositional. It relies on symmetry in the sense
that the generic node analyzed represents any of the nodes that may arise during
the execution of the actual protocol. In addition, the possibility of adversarial
network change is taken care of by modeling the changes as non-deterministic
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actions, which are always enabled, and may take effect at any point. In [12] a
simpler model of AODVv2 was analyzed. In particular, the AODVv2 model in
that earlier work did not incorporate node restarts or the expunging of Expired
route table entries. This meant that the earlier model did not need to consider
the AllClear global guard. We note that consideration of Expired routes leads
to the first example of a routing loop in Section 1.2.

The formation of routing loops has been studied for earlier forms of the
AODVv2 protocol (AODV and DYMO) in [1,5,17,11] and [18]. Although it op-
erates in the same environment and has the same goals, the version of AODVv2
under development differs significantly, in part due to efforts made to ensure that
routing loop scenarios discovered for earlier forms are avoided. For instance, the
use of sequence numbers in AODVv2 is completely different from that in AODV
and DYMO. The version of AODVv2 (DYMO) analyzed in [9] by model checking
fixed configurations allows intermediate, non-target nodes to generate RREQs,
this is not possible in AODVv2-04. Nonetheless, some key features have been
retained across the protocol versions. An important one is the use of (sequence
number, hopcount) as a metric to ensure loop freedom. That is to be expected,
as the intuition given in all of the protocol descriptions is that the sequence num-
ber represents the “freshness” of a route, while hopcount represents its “cost”.
Our work shows that this intuition is valid; but it also shows (from the loop
formation scenarios) that care must be taken when considering disruptive net-
work changes. We have found it surprisingly easy to construct the proof, and we
suspect that this is so because of a focus, through compositional reasoning, on
‘local’ state rather than ‘global’ state, and the many simplifications introduced
by the designers.

The AODVv2 model verified here represents a possible abstract protocol
implementation. However, several features or options of the full protocol are
either not modeled or are not modeled in their full generality. For instance, in
our version each addressable entity in the network is, if present, identified with a
single node in any network topology. In contrast, in the full AODVv2 protocol,
entities may be ‘multi-homed’, and therefore messages sent to the entity may be
sent to multiple destinations.

Another significant difference is that in the model, we assume that the metric
used by all nodes to determine the ‘least cost route’ to a destination is based on
hop count. That is, the distance between any two neighboring nodes is 1, and
the cost of a path from node O to node T is the number of nodes in the path
minus 1. The protocol actually allows protocol implementers to choose a different
metric, which changes the ‘least cost route’. In practice, such metrics may include
information relating to bandwidth of individual edges connecting neighboring
nodes, or the implementation of individual edge connections (wireless, wired,
etc.), to name just a few possible metrics.

In addition, we note that the full AODVv2 protocol allows great scope for
implementation decisions in the following form. Many per-node protocol deci-
sions are described as ‘must’ but some are described as ‘may.’ For instance, if
the route from node H to node T is marked as ‘expired’ in the route table of
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H then H must not advertise this route to its neighbors. However, if H receives
an RREQ for T from a neighbor G then H may choose to add this route to O to
H’s routing table and advertise the RREQ message to H’s neighbors. In our anal-
ysis, we model these decisions as must instructions. Hence, any RREQ message
received at a node H will be processed at H and forwarded to H’s neighbors.
We note that, the models described in our work represent models allowed by
the AODVv2 protocol and therefore any errors or discrepancies found in the
modelled protocol would represent discrepancies in the full AODVv2 protocol.

There are several other approaches to the analysis of dynamic and ad-hoc
networks. The work in [2] shows that Hoare triples for restricted logics are decid-
able. Work in [8,6] applies well-quasi-ordering (wqo) theory to ad-hoc networks,
while the algorithm of [7] relies on symbolic forward exploration, as does (in a
different way) the method of [17]. It would be interesting to see how well these
algorithmic and semi-algorithmic methods apply to the AODVv2 model. Our
own recent work [12] shows that the loose coupling forced by dynamic network
changes contributes to the effectiveness of compositional reasoning and local
symmetry reduction.

4.1 Conclusion and Future Work

We describe a formal proof of loop-freedom for a model of the AODVv2 protocol.
In the course of doing so, we discovered a mistake in version 04 of the protocol,
which has been acknowledged and corrected by the designers. The straightfor-
ward nature of the proof strengthens the conjecture which originally inspired
this work: that dynamic network protocols must be loosely coupled and, hence,
especially amenable to inductive compositional analysis.

There are several open questions that remain. For instance, we are interested
in techniques for the automatic generation of induction compositional assertions
for use in the analysis of loosely coupled dynamic systems. Other questions
surround the analysis of AODVv2 itself. One is to check whether the chosen
values for timing constants are correct for a given configuration of the protocol;
the work in [10] can be a good starting point. Another is to generalize this proof
to apply to a richer class of distance metrics, as well as to network features such
as multi-homing. A particularly important question is to find a good strategy
for constructing proofs for the various combinations of “may” options which are
permitted by the protocol, while avoiding a combinatorial explosion of protocol
variants. As nearly all network protocols include a number of may options, this
is a broadly applicable question, and especially relevant in practice.

Acknowledgments: We would like to thank the authors of the AODVv2-04 pro-
tocol, in particular Charles Perkins, for helpful comments on the loop-formation
scenarios and the proof.
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