
HAL Id: hal-01705452
https://inria.hal.science/hal-01705452

Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

CSAS: Cost-Based Storage Auto-Selection, a Fine
Grained Storage Selection Mechanism for Spark

Bo Wang, Jie Tang, Rui Zhang, Zhimin Gu

To cite this version:
Bo Wang, Jie Tang, Rui Zhang, Zhimin Gu. CSAS: Cost-Based Storage Auto-Selection, a Fine
Grained Storage Selection Mechanism for Spark. 14th IFIP International Conference on Network and
Parallel Computing (NPC), Oct 2017, Hefei, China. pp.150-154, �10.1007/978-3-319-68210-5_18�.
�hal-01705452�

https://inria.hal.science/hal-01705452
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


CSAS: Cost-based Storage Auto-Selection, A
Fine Grained Storage Selection Mechanism for

Spark

Bo Wang1, Jie Tang2, Rui Zhang1,3, and Zhimin Gu1

1 Beijing Institute of Technology University, Beijing 100081, P.R.China
2 South China University of Technology University, Guangzhou 510641, P.R.China

cstangjie@scut.edu.cn
3 Yan’an University, Yan’an 716000, P.R.China

Abstract. To improve system performance, Spark places the RDDs in-
to memory for further access through the caching mechanism. And it
provides a variety of storage levels to put cache RDDs. However, the
RDD-grained manual storage level selection mechanism can not adjust
depending on computing resources of the node. In this paper, we firstly
present a fine-grained automatic storage level selection mechanism. And
then we provide a storage level for a partition based on a cost mod-
el which fully considering the system resources status, compression and
serialization costs. Experiments show that our approach can offer a up
to 77% performance improvement compared to the default storage level
scheme provided by Spark.

Keywords: big data, spark, storage level selection, optimize

1 Introduction

To balance volume and speed, Spark [1] provides five flags to mark storage level,
corresponding to whether use disk, memory, offHeap, serialization and replica-
tion. However, the storage level selection mechanism of Spark has the following
two problems: Firstly, storage level of a RDD is set by programmers manually,
by default storage level is MEMORY ONLY which the RDD can only be cached
in memory. Experiments show that there are significant performance differences
among different storage level. A reasonable storage level decision results in per-
formance improvements; A wrong decision can lead to performance degradation
or even failure inversely. Secondly, RDD-grained storage level selection mecha-
nism may lead lower resource utilization. In Spark, the same cached RDD uses
the same storage level, on the contrary, different RDDs may use different storage
levels. While a RDD is divided into several partitions which have different size
and locate in different executors. Some partitions of a RDD may be comput-
ed on executors which have enough free memory, and others will be pended on
executors which have not enough free memory on contrary.

In this paper, we propose a fine-grained storage level selection mechanism.
Storage level is assigned to a RDD partition, not RDD, before it cache. And



storage level selection of a RDD partition is automatically basing on a cost model
which takes fully account of memory of the executor and various computing costs
of the partition.

2 Design and Implementation

2.1 Overall Architecture

CSAS (Cost-based Storage Auto-Selection) can wisely select a Storage-level,
based on future costs, for a partition before it is to be cached. The overall
architecture, shown as Fig.1, consists of three components: (i)Analyzer, which
lies in the driver, provides the function of analyzing the DAG structure of the
application to obtain the RDDs which will be cached and their execution flows;
(ii)Collections, one in each executor, are used to collect real-time information,
such as creation time, (De)serialization time of each RDD partition, during the
task running; (iii) Storagelevel Selectors, also one in each executor, are arbiters
for decision which storage level will be used by RDD partition when they will
be cached.

Analyzer

DAGScheduler

Collector

BlockManager

MemoryStore

DiskStoreSerializer

Compressor

Storagelevel

Selector

Driver Executor

Fig. 1. Overall architecture of
CSAS.

t1

t2

t3

t4

t5

t6

Memroy Free Memroy Lack

t

In memory RDD

pending RDD

Fig. 2. RDD execution model.

2.2 Analyzer

As mentioned above, Analyzer obtains dependencies of RDDs and RDDs that
will be cached according to DAG constructed by DAG Scheduler. There are two
types of RDDs, called cache RDDs and non-cache RDDs. When computes on a
RDD, it is necessary that all RDDs it depends are ready. If there are RDD(s)
absent, the absences need to be created firstly. For non-cache RDDs, they are
computed each time; For cache RDDs, they are got from memory or disk or
both through CacheManager according of storage level after first computing. So
we need to obtain the interdependencies among cache RDDs. In this paper, we
use LCS’s DFS algorithm [3] to get the ancestor cache RDDs of a RDD and the
creating path of each cache RDD. At last, all these informations are recorded
and are used to compute create cost of a RDD in Collector.



2.3 Collector

Informations that A collector collect are listed in the followings:

Create Cost: Time spends on computing a RDD partition after all ancestor
cache partitions are ready, denoted as Ccreate.

(De)Serialization cost: Time takes on serialize or deserialize a RDD parti-
tion, denoted as Cser or Cdeser.

(De)Compression cost: Time takes on compress or decompress a RDD par-
tition, denoted as Ccomp or Cdecomp.

Disk cost: Time takes on I/O on Disk, denoted as Cdisk.

When (De)Serialization cost of a RDD partition is absent, we need esti-
mate it using its cost per MB data [3], denoted as SPM and DSPM. When
(de)serialization cost is unknown for a RDD partition, we estimate its (de)serialization
cost according by the size of the partition and SPM or DSPM of corresponding
RDD respectively. (De)Compression cost is also estimated using the same way.

According the above definition, we can calculate cache cost of a RDD parti-
tion in different scenarios, denoted as Ccache. To get optimum storage level for
each partition, we compute cache cost of a RDD partition of Normal scenari-
o, Serialization scenario, Disk scenario and Compression scenario to determine
each storage level flag of a partition.

As shown in Fig.2, RDD partitions in memory will reach saturation at the
time t. At this time, the pending RDD partitions should wait until some tasks
finished and freed enough space to run. So the whole computing is divided into
parallel computing and sequence computing two phases in a stage. Among them,
computing operations on RDD partitions have no interference each other in
parallel computing phase. In contrast, operations on a RDD partition must delay
until another computing finished in sequence computing phase. The moment
that sequence computing phase begins is after the first finish task in parallel
computing phase has released its memory. Thus, the worst case caching cost in
stage i can be concluded in 1:

Ci
wccc = max{C1

cache, ..., C
m
cache}+

(n−m)/m∑
(k=1)

maxCk
cache (1)

Where n is the number of total RDD partitions will be cached in the future of
this stage; m is the number of RDD partitions computing in parallel; maxCk

cache

is one of the top (n−m)/m max cache cost among RDD partitions in sequence
computing phase. The second half is the sum of top (n−m)/m cache cost among
RDD partitions in sequence computing phase.

2.4 Storagelevel Selectors

Storage level selector in this executor evaluates an appropriate storage level for
the partition based on worst case caching cost of various scenarios before a RDD
partition is to be cached. Algorithm 1 shows the storage level selection strategy



for a cache RDD partition is determined by the values of worst case caching cost
among various scenarios under the current memory circumstance. All costs used
in algorithm 1 are caculated based on 1.

Algorithm 1. Cost-based Storage Level Selection

function StorageLevelSelection

Input: Cms_regular, Cms_serialize, Cms_compress, Cms_disk,

unroll_size, free_size

Output: StorageLevel

useMemory = true

deserialized, useDisk, Compress = false

if(Cms_regular > Cms_serialize)then

deserialized = true

endif

if(Cms_regular > Cms_disk)then

useDisk = true

endif

if((Cms_compress < Cms_serialize)

&&(Cms_compress < Cms_disk < 0))then

Compress = true

endif

if(unroll_size > free_size)then

useMemory = false

endif

if(!useMemory)then

useDisk = true

endif

return StorageLevel

endfunction

3 Performance Evaluations

The experiment platform includes a cluster with three different nodes, one as
both master and executor and the remaining only act as executors. And we adopt
HDFS for storage, each partition has one replications. The datasets are generated
by BigDataBench [4]. We use WordCount and KMeans two benchmarks in our
experiments. For the convenience of test, we have two RDD cache for wordcount,
respectively textFileRDD and flatMapRDD. The size of the two RDDs is about
nine times difference. All data are normalized based on CSAS execution time.

Fig. 3 shows the difference of performance between CSAS and Spark native
system which under different cache storage levels. It shows that there is a huge
difference in execution time under different storage levels in native Spark. And
CSAS can reduce 66.7% time compared to M M which are the default scheme
in Spark.



Fig. 3. Overall performance. Fig. 4. Performance in different data sizes.

Fig. 4 shows the compare of performance between CSAS and Spark native
system which under different input sizes. In the experiment, we set all cache
RDDs’ storage level to MEMORY ONLY. For WordCount, CSAS can reduce
8.1-77.2% time compared to M M in different input sizes. And for Kmeans,
Spark fails when input size bigger than 4GB during using the default storage
level, but CSAS can work well.

Acknowledgments. Jie Tang is the corresponding author of this paper.
This work is supported by South China University of Technology Start-up Grant
No. D61600470, Guangzhou Technology Grant No. 201707010148 and National
Science Foundation of China under grant No. 61370062.

References

1. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., and Stoica, I.: Resilient Distributed Datasets: a Fault-tolerant
Abstraction for In-Memory Cluster Computing’. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, San Jose, CA, pp.
2-2(2012)

2. Choi, I.S., W. Yang, and Y.S. Kee.: Early Experience with Optimizing I/O Perfor-
mance using High-performance SSDs for In-Memory Cluster Computing. In: Pro-
ceedings of IEEE International Conference on Big Data (Big Data 2015), (2015)

3. Geng, Y., et al.,: LCS: An Efficient Data Eviction Strategy for Spark. International
Journal of Parallel Programming, pp. 1-13(2016)

4. BigDataBench, http://prof.ict.ac.cn/BigDataBench/


