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Abstract. The Keystroke-Level Model (KLM) is a predictive model used to nu-
merically predict how long it takes an expert user to accomplish a task. KLM has 
been successfully used to model conventional interactions, however, it does not 
thoroughly render smartphone touch interactions or accessible interfaces (e.g. 
screen readers). On the other hand, the Fingerstroke-level Model (FLM) extends 
KLM to describe and assess mobile-based game applications, which marks it as 
a candidate model for predicting smartphone touch interactions.  
This paper aims to further extend FLM for visually impaired smartphone users. 
An initial user study identified basic elements of blind users’ interactions that 
were used to extend FLM; the new model is called “Blind FLM'”. Then an addi-
tional user study was conducted to determine the applicability of the new model 
for describing blind users’ touch interactions with a smartphone, and to compute 
the accuracy of the new model. Blind FLM evaluation showed that it can predict 
blind users’ performance with an average error of 2.36%. 

Keywords. Keystroke-level mode (KLM), Fingerstroke-Level Model (FLM), 
mobile phone, smartphone, mobile KLM, touch interaction, visually impaired us-
ers, blind users. 

1 Introduction 

In Human Computer Interaction (HCI), predictive models allow for human perfor-
mance to be measured analytically to evaluate the usability of computer systems’ design 
scenarios using low fidelity prototypes and no user participation [19]. The Model Hu-
man Processor (MHP) provides a simplified view of the human information processing 
system that can be used to predict user behaviour. MHP is one of the key components 
of Card et al.’s [5] framework for human performance modelling, and is a central part 
of the framework’s other key component; a set of techniques collectively referred to as 
Goals, Operators, Methods, and Selection rules (GOMS). This family of techniques is 
used to compare and evaluate motor behaviour by describing four components of 
skilled error-free user performance: goals, operators, methods, and selection rules. 

The GOMS family is used to model goal hierarchies of defined unit tasks. The tasks 
are rendered as a composition of actions and cognitive operations. The analysis of the 



composition yields quantitative and/or qualitative measures of performance [5]. Mem-
bers of the GOMS family differ in their analysis complexity and the accuracy of pre-
dicted completion times [11,12]. The Keystroke-Level Model (KLM) is a simplified 
implementation of GOMS that is used to numerically predict execution times for spe-
cific tasks in a desktop environment using mouse and keyboard input [4]. The simple 
model has been widely applied to predict expert performance of various desktop inter-
faces and its analysis has proven accurate [23]. This fact demonstrates the aptitude and 
usefulness of KLM. 

Originally intended for desktop systems, KLM has been continually extended to 
model new paradigms of user interaction. With the advancement of smartphone tech-
nologies, the original model has been modified for smartphone interaction to ease and 
accelerate usability testing in the early phases of development. Smartphone extensions 
to KLM review the model’s decomposition by modifying the original operators, intro-
ducing new actions, and revising execution times. These new interactions and extended 
models include predictive text entry [17], voice recognition [6], Near Field Communi-
cation (NFC) technology [10], touch input [20], and touch-less interaction [8]. 

GOMS techniques and smartphone extensions to KLM model visual desktop and 
smartphone systems to overcome the drawbacks of usability testing by reducing cost 
and identifying problems early in the development process. However, these models as-
sume non-disabled users that are able to visually perceive the interface. Visually im-
paired users [27] utilise assistive tools to decrease or eliminate visual dependency. 
Screen readers provide auditory descriptions of visual elements on a traditional screen. 
Similarly, smartphones provide accessible interfaces to compensate for visual impair-
ment. Models formulated exclusively from and for visual computer systems are ill-
equipped to represent interfaces accessible to visually impaired users and their interac-
tions. 

This paper proposes an extended KLM model that is applicable to visually impaired 
smartphone interaction, and it makes two main contributions. First, a selected mobile 
KLM extension is examined and modified to model visually impaired smartphone in-
teractions. Second, the new model is evaluated in two user studies where the model was 
able to thoroughly render and accurately predict blind users’ interactions with a 
smartphone. 

In the following sections, we first describe KLM and recall its benefits and limita-
tions as a predictive model.  Next, we review the literature on cognitive models for 
accessible designs and extensions to KLM. We then present the first study for the pur-
pose of extending KLM. This resulted in an enhancement to FLM that considers acces-
sible designs for blind smartphone users. Furthermore, we validate the extended model 
in a main experiment.  We then present and discuss the results of the validation exper-
iment. Finally, we draw conclusions and future plans.  

2 Background and Related Work 

The extended KLM for visually impaired smartphone interaction builds upon prior 
work in predictive models and a stream of KLM expansions in accessible interfaces and 



smartphones. While this section does not represent a complete review of the state of the 
art for model based usability evaluation, it, nevertheless, highlights the most relevant 
work and how they may differ. 

2.1 Keystroke-Level Model (KLM) 

KLM is one of GOM’s simpler techniques that computes the time it takes an expert 
user to perform an error-free task on a desktop application. KLM inherits several limi-
tations from GOMS that limit analysis to linear, closed tasks that are executed error-
free by expert users. Task execution time is predicted in KLM by decomposing a set of 
tasks into a list of perceptual, cognitive, or motor operators and computing its summa-
tion. The model consists of six operators [4]: 

• Keystroke K key or button press 
• Point P point at a target with the mouse 
• Home H move hands to the home position (keyboard or mouse) 
• Draw D draw a line on a grid 
• Mental act M mental processing prior to taking an action 
• Response R system response time 

Moreover, the mental operator is governed by a set of heuristic rules that consider cog-
nitive preparation: 

• Rule 0: insert M operators in front of all K operators. Also, place M operators in 
front of all P operators used to select commands. 

• Rule 1: remove M operators that appear between two operators anticipated to ap-
pear next to each other. 

• Rule 2: remove M operators belonging to one cognitive unit except the first; a 
cognitive unit is a premeditated chunk of cognitive activities. 

• Rule 3: remove M operators that precede consecutive terminators. 
• Rule 4: remove M operators that preceded terminators of commands. 

The unit execution time for each operator (excluding R) have been set from previous 
HCI research. KLM predicts a task’s execution time by adding the operators’ unit times 
for each of the task’s activities, where Toperator is an operator’s total time:  

 Texecute = TK + TP + TH + TD + TM + TR 

KLM was empirically validated against keyboard and mouse based systems and various 
tasks [4]. The model’s predictions were found to be accurate with an error of approxi-
mately 21%. 
 



2.2 Cognitive Models in Accessibility 

The design of accessible web pages are governed by sets of regulations and guidelines 
to maximise its use among users of varying capabilities [26]. Automated tools are uti-
lised by designers to assess compliance, however these tools only evaluate checkpoints 
and do not thoroughly assess other usability issues (e.g. effectiveness and efficiency). 
Visually impaired computer users use screen readers to navigate applications; visual 
content is represented as a coded linear sequence that is synthesised into auditory 
presentation. The GOMS family of techniques are suited for modelling screen readers’ 
sequential output as the model’s application is limited to linear tasks. A handful of re-
search have explored extending predictive models to reproduce screen readers’ auditory 
representation. 

Time-oriented aspects of usability were the focus of a new visualisation approach, 
Blind Usability Visualisation [22]. This approach was later implemented as a disability 
simulation tool, Accessibility Designer (aDesigner), to evaluate and visualise the usa-
bility of web pages for blind users. The tool’s most novel feature is the concept of 
‘reaching time’; the time it takes a blind user using a screen reader to reach a desired 
destination on a web page from the top of that page. The tool is not a predictive model 
and while average reaching time can be used to measure the navigability of a web page 
by blind users, it excludes cognitive decision times or other operations. An extension 
to one of GOMS techniques addresses this rough estimation of reaching time [24]. 

User observations and two field studies were performed to provide a broad overview 
of blind interaction on accessible web pages [24]. The studies identified key findings 
of blind interactions, this include: reliance on different navigational strategies, frequent 
speech rate configuration, verification of screen reader output, and activation of inter-
active elements. Some of these findings were used to introduce new structures to the 
Natural GOMS Language (NGOMSL) that extended the model for accessible web 
pages. Configurable speech rates and Braille readings times and their impact were not 
considered. This modified model aimed to automate the assessment of accessible web 
page efficiency by calculating the time it takes to execute a task on a web page. Never-
theless, the model remains qualitative in nature and unverifiable which makes its appli-
cation difficult. 

Working with non-disabled users, new models were introduced to assess mouse and 
keyboard navigation in a web site [21]. The keyboard model focused on users who 
could not use a pointing devices and quantified keyboard navigation’s disadvantage 
against mouse navigation. The TAB key is used to navigate a chain of links in a web 
page by first locating the target link then pressing the key n times until the link is 
reached and finally activated by pressing ENTER. This is clearly problematic for link-
intensive web sites. The models extend KLM, each of which introduced new operators. 
Time estimates for the new keyboard operators were measured in a laboratory experi-
ment with non-disabled expert users. Theoretically the model can be used to render 
blind interaction, but requires adaptation to consider the time it takes a blind user to hit 
the TAB key. 

Blind users’ interaction with web pages via a screen reader were remotely observed 
and analysed to supplement KLM [25]. CogTool [13], a cognitive modelling tool that 



supports rapid evaluation analysis of GOMS formulations, was used to validate KLM’s 
efficacy at modelling blind users’ interaction. KLM did not accurately model the user’s 
behaviour as it did not consider the screen reader’s high speech rate. Additionally, 
CogTool’s rules for placing KLM’s mental operators, which were procured from 
sighted user’s interaction with visual content, did not ideally reflect the observed skilled 
interaction of the blind user. Discarding the mental operators from calculation did not 
improve accuracy, which suggests the parallel recognition of situations and decisions, 
as well as auditory reception of the screen reader’s speech. A future tool was envisioned 
for evaluating blind users’ interaction on a web page, but was not implemented. 

2.3 KLM Extensions 

Usability testing is an expensive process that is exacerbated with disabled users as test-
ing will have to be carried out late in production with high fidelity prototypes. The 
recent direction of model extension address the usability needs of non-disabled 
smartphone users. These models lend themselves to further modification to address 
blind smartphone interaction. KLM is typically extended by evaluating original opera-
tors and introducing new operators and equations. This section focuses on smartphone 
extensions to KLM and reviews direct touch models. 

In the context of smartphone interaction, studies for extension began with text entry 
methods and predictive text. An early model extended KLM for three text entry meth-
ods using a smartphone's keyboard and compared predictions of typing speeds for each 
of these methods [7]. Another model identified and validated new operators that repre-
sent typical and advanced smartphone interaction (e.g. identification tags and gestures) 
[9]. The model was later revised to include NFC interactions [10]. An extended model 
utilised KLM, Fitts’ law, and a language model to predict user performance with two 
types of Chinese input methods on smartphones [17]. For the purpose of presenting a 
new keyboard, 1Line, KLM was extended to measure multi-finger touchscreen key-
strokes [15]. Replacing the keyboard with speech input, a new model investigated the 
feasibility of a speech-based smartphone interface for text messaging, which adapted 
original operators and introduced predictive equations to the model [6]. 

Beyond keyboard or speech input, KLM had been extended to predict user interac-
tion time and system energy consumption on smartphones [18]. KLM was also adapted 
for next-generation smartphone designs, particularly phones that utilise styli [16]. The 
new model introduced new operators that uniquely represent stylus interactions, and 
presented the concept of operator block (a sequence of operators that can be used with 
high repeatability). For direct touch interaction, KLM was modified to model middle-
sized touch screens in Integrated Control Systems (ICSs) [1], where the prediction error 
was less than 5%. 

Touch-based smartphones later replaced traditional phones where new extensions 
were required to assess this new paradigm of human interaction. The Touch Level 
Model (TLM) was proposed to support interaction with touch devices via direct inter-
action [20]. Several operators were retained from KLM as they remain applicable to 
touch input (keystroking K, homing H, mental act M, and system response time R), but 
discarded the drawing D operator. Several new operators were freshly introduced or 



inherited from other extensions to KLM that were not developed for touch input: dis-
traction X [9], gesture G, pinch P, zoom Z, initial act I [9], tap T, swipe S, tilt L(degrees), 
rotate O(degrees), and drag D. TLM has the potential for benchmarking users’ touch 
interactions, but the new operators are without baseline values and the model has yet to 
be validated. Retained operators’ unit times will likely need to be reexamined as well. 

Fitts’ law is a descriptive model that considers the physical aspects of a Graphical 
User Interface (GUI) and predicts the time it takes to point to a target. In previous re-
search, Fitts’ law has been integrated with KLM to produce enhanced smartphone ver-
sions of the model and to compute average execution time based on physical interface 
features (e.g. [17]). One enhancement extended KLM with three common touch inter-
actions: swipe, tap, and zoom [3]; interactions similarly modelled in TLM [20]. Unlike 
TLM [20], unit operators’ times were formulated using Fitts’ law. Nevertheless, the 
model’s potential has not been verified against their intended interaction and applica-
tion. 

Mobile games have increased in popularity as smartphones are becoming more du-
rable and supportive of direct touch interaction. The Fingerstroke-Level Model (FLM) 
is a modified version of KLM developed for the evaluation of mobile gaming efficacy 
[14]. FLM adapted original operators and introduced new ones to cope with the new 
interactions. The model is comprised of six operators: tap T, point P, drag D, flick F, 
mental thinking M, and response time R. FLM shares P, M, and R with the original 
KLM, and tapping and dragging (i.e. swiping) with TLM [20] and El Batran et al.’s 
extension [3]. Unlike the original KLM and its extensions [3,20] that results in a single 
deterministic value, FLM is a regression model. FLM was applied to a mobile game 
where it was able to predict its execution time more accurately than KLM. 

3 KLM Extension for Blind Interaction 

The main objective of the first user study was to explore blind users’ interaction with 
touch-based smartphones. Prior to the study, an online screening questionnaire was dis-
tributed to better understand blind users’ smartphone interaction. The questionnaire’s 
main objectives were to identify commonly used smartphones, popular applications, 
and blind users’ experience with smartphones. The questionnaire was conducted in Ar-
abic and garnered twenty-one respondents, the majority of which were female with an 
average age of 26.57 years (standard deviation, SD = ±9.66). Excluding one participant, 
the entire sample used iPhones with the majority (81%) having at least three years of 
experience with the device. The respondents ranked Twitter, WhatsApp, and YouTube 
as their most often used applications. 

3.1 Methodology 

Two instruments were used in this study: structured interviews and observation. The 
interview was designed to discover popular actions utilised by blind users when using 
applications on a smartphone. The vocalised actions were then confirmed via observa-
tion. 



Participants. Three female blind participants with a mean age of 20 years took part. 
The participants were university students in the College of Education at King Saud 
University. All participants had good experience with using an iPhone (average expe-
rience of 5.6 years) and gave vocal informed consent. 

Apparatus. The iPhone was screened as the most commonly used smartphone and its 
use was observed in this study. VoiceOver is a built-in speech synthesiser that assists 
visually impaired users when interacting with iOS devices (e.g. iPhone) and applica-
tions. Along with specific gestures, users are able to navigate and activate interface 
element. For instance, a user taps to select an element and listen to its auditory descrip-
tion which informs upcoming actions. Keyboard input is also facilitated with audio. 
Speech rate of the synthesiser is adjustable in VoiceOver via a rotor that is manipulated 
by rotating two fingers on the screen. However, this action is often infrequent during a 
task and is therefore excluded from consideration. 

Materials. Interview questions were predetermined starting with an introductory ques-
tion regarding the smartphone used and its version. The following question prompted 
the participant for any set of actions that are typically adopted with iPhone applications. 
The participant was asked to list these actions if she was able to identify a particular set 
of actions repeatedly used among various application. Otherwise, the participant is 
asked to describe her interaction with iPhone applications. For the study’s instrument, 
two tasks for Twitter and WhatsApp were prepared for observation. In the Twitter task, 
the participant was asked write and send a tweet on her personal account. For 
WhatsApp’s task, the participant was asked to write and send a message to someone 
from her contact list.  

Procedure. Sessions were held in a quiet room and lasted approximately 40 minutes. 
First, the participant was welcomed and the general research idea was introduced. Two 
instruments were used in this study, interviews and observations, which were conducted 
in the same session in sequence. First, the questions were put forth to the participant in 
Arabic. Second, the participant was asked to carry out the Twitter or WhatsApp sce-
nario under observation. The choice of task and application was dependent on the par-
ticipant’s familiarity with said applications.  

3.2 Results 

From the interviews, all three participants agreed that they did not follow a series set of 
actions when interacting with their iPhones. Nevertheless, when asked to describe the 
sequence of actions typically taken when interacting with an application, the partici-
pants identified the following sequence: listen, navigate to a certain button or content 
(via flick operation), then activate the element (via double tap). These reported actions 
were then verified with observation.  



Two of the participants performed the WhatsApp task, while the third participant 
carried out the Twitter task. In the Twitter task, the participant opened the application 
with a double tap and then navigated within the application by flicking the screen with 
her finger. At times, the participant listened to the complete audio description of the 
visual element before deciding on an action. Other times, the participant was satisfied 
with a partial description. For text input, the participant tapped on the screen until the 
textfield was located (this was vocalised with VoiceOver) and used double tap to acti-
vate the keyboard. The writing process started with a tap on the approximate position 
of the intended character to hear the description. These actions were similarly observed 
with the WhatsApp task. 

Blind users’ smartphone interaction via the device's screen reader can be summarised 
into four actions: tap, double tap, flick, and drag. Tap actions are used to select an ele-
ment. The selected element is activated via a double tap action. Flicking a finger on the 
screen is used to navigate the application's elements. Vertical and horizontal scrolling 
is achieved by sliding or dragging three finger across the screen. 

 

3.3 Revised FLM for Blind Users 

The user study identified a series of operations that were frequently carried out by blind 
users interacting with a smartphone application: tap, double tap, flicking a finger on the 
screen, or scrolling vertically or horizontally by dragging three fingers across the dis-
play. These actions were mapped against the previously reviewed touch-based 
smartphone extensions to KLM (see Section 2.3 and Table 1). 

Table 1. The observed blind actions mapped against the same/similar actions (i.e. operators) in 
TLM [20], El Batran et al.'s model [3], and FLM [14]. 

Action/Model TLM [20] El Batran et al. [3] FLM [14] 
Tap Tap T Tap Tap T 
Flick Swipe S Short swipe Flick F 
Double tap    
Drag Drag D Long swipe Drag D 

 
The four observed actions related to three operators from TLM [20], El Batran et al. 

[3], and FLM [14]. Tap actions are a common direct touch behaviour that corresponds 
well to the Keystroke K operator in KLM and was identified in the previous literature 
[3,14,20]. The observed flick action was a single finger swipe that is short and quick 
and directly mapped against FLM’s Flick F [14]. TLM [20] defined Swipe S as placing 
one or more fingers on the screen and moving that finger in a single direction for a 
period of time, while El Batran et al. [3] described swipe as a short or long action to 
achieve tasks such as scrolling. These two actions can roughly represent the observed 
flick action, while TLM’s [20] Drag D and El Batran et al.’s [3] long swipe can model 
the observed drag action. 



Of the three touch-based smartphone extension to KLM, FLM's [14] operators 
closely resemble the observed actions. Unlike TLM [20], units times were computed 
for the various operators in FLM [14] and El Batran et al. [3]. However, El Batran et 
al.’s [3] model only provides unit time for a short swipe (resembling a flick) and not 
for a long swipe. Moreover, the operators in FLM were validated in an experiment 
where the root mean square error (RMSE) of the observed and predicted execution 
times was 16.05%. For that purpose, FLM was selected as the prime candidate for ex-
tension. The extended FLM model is called Blind FLM, and its operators and unit times 
are summarised in Table 2 in relation to KLM [4] and FLM [14].   

Table 2. Retained, excluded, and new operators of the extended FLM (Blind FLM) and their 
time estimates as compared to the original KLM [4] and FLM [14]. 1 Drawing D assumes n 
straight line segments having a total length of l. 2 Flick F value is set at 0.12 seconds considering 
error-free navigation that were observed to be typically from right to the left. 

KLM [4] Time (s) FLM [14] Time (s) Blind FLM Time (s) 
Keystroke K 0.2 Tap T 0.31 • 0.31 
Point P 1.1 • 0.43   
Draw D 0.9n + 0.16l1 Drag D 0.17 • 0.17 
Home H 0.4     
Mental act M 1.35 • 1.35 • 1.35 
Response R variable • variable • variable 
Extensions      

  Flick F 
0.12right-to-left 

0.11left-to-right 
• 0.122 

    Double tap DT 0.62 

Retained Operators. Five of the original FLM operators are still appropriate to model 
blind users’ interactions on an iPhone mobile device with VoiceOver. 

• Tap T A blind user taps anywhere on the smartphone’s screen to listen to the 
audio description of the underlying visual element. This could be a button, text, 
link, image, or video. Tap is also used to choose the start position for navigation.  

• Drag D Vertical and horizontal scrolling is performed by sliding/dragging three 
fingers across the screen.  

• Flick F Unlike dragging D, this action is typically quick and achieved with a 
single finger to navigate application elements.  

• Mental preparation M With the absence of sight, blind users rely on other senses 
to conceptualise the real world. Blind smartphone users utilise audio description 
to map their next interaction, i.e. the mental preparation needed to perform the 
following action. KLM [4] was previously refined to model screen readers and 
the authors suggested that recognition of the present situation, screen reader's 
speech, and action decisions occur in parallel. This was also argued for typing 
actions [25].  



• Response time R This operator is system dependent, arguably irrelevant due to 
the technological advancement and negligible response times. Nevertheless, the 
variable is still retained to account for different devices and software.  

New Operators. New operators are introduced to the extended FLM to account for 
novel interactions that are afforded by the analysed interface. Tap interactions are fre-
quently utilised by blind users to select an element and is retained from FLM [14]. 
Double tap actions activate the selected element (via tap). This is unique to blind users’ 
interaction, where the former voices the element and the latter launches the element. 

Excluded Operators. The pointing operator P is excluded in Blind FLM as it is not 
applicable to blind users’ interaction since pointing at an element requires visual per-
ception. Instead of pointing, a blind user taps close to a target element or navigates the 
elements sequentially. Both of which are represented by the original FLM operators: 
tap and flick, respectively [14]. Thus, the act of pointing works in tandem or is encap-
sulated with/within the subsequent action and is not used in its singularity.   

Operators’ Unit Times. The baseline value for the FLM [14] operators were computed 
with a practical study. The original values are employed for Blind FLM. In the case of 
the double tap DT action, the value of tap T is multiplied by two. The mental thinking 
M operator was not changed from the original KLM and is maintained for this extension 
as well. See Table 2 for execution times for all operators. 

 

4 Blind FLM Validation 

The efficacy of a model and the accuracy of its baseline values are typically evaluated 
through controlled research studies with human subjects. Within-participants experi-
ments were conducted to investigate Blind FLM. The purpose of these two studies were 
twofold: 1) to determine the applicability of the Blind FLM operators for describing 
blind users' touch interactions with a smartphone (first user study); 2) to compute the 
accuracy of the new model by comparing observed execution times with predicted 
times (second user study). 

4.1 First User Study 

A preliminary study was carried out to satisfy the first purpose of the experiment; de-
termine if the new model and its operators are fit to fully model blind touch interactions 
with a smartphone. This study was also used to evaluate the experimental tasks in order 
to refine the tasks for the next study.  
 



Methodology.  

Participants. Five female participants with a mean age of 20.2 years (SD = ±0.84) were 
recruited for the experiment. All participants were familiar with using an iPhone and 
VoiceOver with an average of 5.8 years of experience (SD = ±1.1). The participants 
were students recruited from King Saud University. The device’s VoiceOver speech 
rate values ranged from 80% to 100% with an average of 90%. 

Apparatus. Apple's iPhone 6 with VoiceOver was used by all participants. Access to 
the three applications were made via the participants’ private accounts. A camera was 
used to video record participants’ interactions. 

Task. Based on the previously discussed questionnaire results: Twitter, WhatsApp, and 
YouTube were the top three used applications in the blind community. For the prelim-
inary study, three sessions were dedicated for each of these applications. Each session 
consisted of three tasks; one open task and two structured tasks (a total of nine tasks). 

 

• Twitter 
─ Structured tasks 

1. View the profile of the first account on the ‘Following’ page 
2. Write a tweet consisting of a single word in Arabic or English (e.g. 

‘Hello’) and to tweet the message 
─ Open task: retweet any tweet from the timeline 

• WhatsApp  
─ Structured tasks 

1. Make a voice call with the first contact from the chat list 
2. Reply to the first chat from the chat list with a single word in Arabic or 

English (e.g. ‘Hello’) 
─ Open task: create a new chat group with two contacts 

• YouTube  
─ Structured tasks 

1. Play the first video in the home page 
2. Subscribe to the channel of the first video in the home page 

─ Open task: delete YouTube's browsing history 

The open scenario was used to determine if Blind FLM was able to thoroughly represent 
blind users’ interaction with a touch-based smartphone. KLM and extensions of KLM 
are only equipped to represent error-free interactions and tasks, thus the two structured 
tasks were used to reduce the space of probability and error. The two structured tasks 
were presented as a set of steps that begin from a uniform starting point that continued 
sequentially. 

Procedure. Sessions were held in a quiet room with a WiFi connection, and each ses-
sion lasted approximately 45 minutes. First, the participant was given verbal instruc-
tions about the experiment and its purpose. After which, the participant was given a 



chance to voice any questions about the study. Consent was then collected and recorded 
verbally. Each of the nine tasks was presented to the participant with its required steps. 
Prior to starting a task, the participant practiced the task until it was mastered and com-
pleted without error. For the structured task, whenever a mistake occurred the partici-
pant was asked to redo the scenario. All sessions were video recorded.  

Participants were asked to use their own iPhones for the experiment. To ensure uni-
form VoiceOver settings for all participants a set of instructions were provided. The 
speech rate of VoiceOver was set on 80% speed. The volume of the speech synthesiser 
was set to its highest rate. Typing mode was set to standard typing.  

Results. The video recording for all sessions were coded using the Behavioural Obser-
vation Research Interactive Software (BORIS) [28]. BORIS, an event logging tool, al-
lowed the experimenter to observe the video recordings and log observations, i.e. Blind 
FLM’s operators. 

Structured Tasks. The structured tasks were modelled using Blind FLM to predict exe-
cution times. All tasks were first modelled with the proposed Blind FLM physical/mo-
tor operators. The response time R operator was not used due to the iPhone’s almost 
instantaneous reaction. Mental act M operators were later added based on the new 
model’s modified heuristic rules. Rules 1, 3, and 4 from the original KLM are not ap-
plicable in this context. Rule 1 is related to fully anticipated operators, while Rules 3 
and 4 handle syntactic terminators. Rule 0 and 2 were modified from the original KLM 
to reflect visually impaired smartphone interaction: 

• Rule 0 (R0 base rule): insert M operators in front of all K operators that are used 
to type a text. Also, place M operators in front all P operators that are used to 
select a method. In Blind FLM, flick F, tap T, double tap DT, and drag D operators 
substitute keystroke K and point P operations.  

• Rule 2 (R2): remove all M operators that are related to one cognitive unit except 
the first M. 

For Twitter’s first task, one participant was excluded from the analysis due to mul-
tiple mistakes. The observed execution time for that scenario with the four participants 
was 13.8 seconds compared to a predicted value of 11.33 seconds. For the first 
WhatsApp structured task, the average predicted execution time was 7.72 seconds com-
pared to an observed value of 8.34 seconds. The first YouTube task’s predicted execu-
tion time was 4.04 seconds compared to the observed value of 5.68 seconds. The second 
tasks from all three applications were excluded due to varying typing speed in Twitter 
and WhatsApp, and for repeated mistakes in YouTube’s task. The root mean square 
error (RMSE) is commonly used to evaluate KLM’s predictions [4]. The average com-
puted RMSE for the three structured tasks was 1.73%.   

Open Tasks. The average number of actions undertaken for the open task was 14.6 for 
Twitter, and 19 for YouTube, and 60.8 for WhatsApp. Negligible mistakes were de-
tected, with no more than two errors per task. The Twitter task consisted of 73% flick 



F actions, 19% double taps DT, and 8% tap T actions. For the WhatsApp scenario, 
approximately 40% of the interactions were categorised as flick F and 30% were tap T 
actions. Double tap DT made up 26% of the actions, while drag actions D were only 
performed 4% of the time. The majority of the interactions in the YouTube task were 
flick F actions (78%), followed by double tap DT (21%) then tap T (1%). No drag D 
actions were observed for the Twitter or YouTube tasks. The open tasks were not ana-
lysed with Blind FLM as participants were not restricted to a set of predefined task 
sequences.  

Discussion. Blind FLM was well-equipped to model blind user’s touch interactions 
with an iPhone and VoiceOver. This section discusses the findings of the preliminary 
study for the open and structured tasks. 

Structured Tasks. In the original KLM, the observed model error was 21% of the aver-
age predicted execution time [4]. This level of accuracy was achieved in the preliminary 
study. Nevertheless, the sample size was too small to be representative.  Additionally, 
it was observed with the structured tasks that typing speed varied between the partici-
pants which may affect the consistency of the computed results. The second structured 
task for each of the examined applications involved a typing subtask. These tasks will 
be excluded in the upcoming user study. Unlike the other actions, modelling text entry 
is complex. Previous findings for text entry identified various factors that impact text 
entry, this includes: repetition effect (first tap, second, or more), key type (number, 
alphabet, or character), entry method (e.g. predictive or word completion), typing 
speed, and language corpus. Due to this distinctiveness, text entry is excluded with a 
plan for a future extension.  

Open Tasks. The open task for each of the three applications were observed to deter-
mine Blind FLM’s coverage of blind users’ interactions. The operators’ occurrence 
rates were computed and indicated the operators’ priorities and their weights in the total 
execution time. The majority of operators were regularly used to model interactions. Of 
those operators, flick F was the most frequently used when interacting with the 
smartphone. The drag D action was the least used operator and was only observed in 
WhatsApp’s open task.  

4.2 Second User Study 

A second user study was carried out to validate Blind FLM. The purpose of this study 
was to compute the accuracy of the new model by comparing observed execution times 
with predicted times. The experiment expanded on parts of the previous study and im-
proved the tasks to overcome inaccuracy concerns.  
 
 
 



Methodology.  

Participants. Twenty right-handed individuals (7 males, 13 females) with a mean age 
of 21.5 years (SD = ±7.24) took part in the experiment. Participants were recruited from 
Kafeef organisation (an organisation that is concerned with training and qualifying 
blind citizens), Alnoor institute (a female school for the blind), and King Saud Univer-
sity. On average the participants had 5.4 years of experience (SD = ±1.5) with using an 
iPhone and VoiceOver. The average speed rate utilised with VoiceOver was 89%.  

Apparatus. Similar to the previous study, an iPhone 6 was used by all participants with 
VoiceOver. Each participant used their own device, as well as accessed their private 
Twitter, WhatsApp, and YouTube accounts. The sessions were video recorded with a 
camera. 

Task. The task used with this study were previously examined in the previous experi-
ment. For each of the three applications, a single structured task was used. The steps 
used in the preliminary study were re-evaluated as new versions of WhatsApp and 
YouTube were released. The starting position for each of the three tasks was the default 
position of VoiceOver. In Twitter, the participant was expected to follow the steps nec-
essary to display the profile of the first account on the ‘Following’ page. The task’s 
steps for Twitter were as follows: 

• Flick to the settings button  
• Flick to the switch account button  
• Flick to edit profile button  
• Flick to profile name button 
• Flick to user account button  
• Flick to location button  
• Flick to following button  
• Double tap on the following button  
• Tap on the screen 
• Scroll down once  
• Tap on the screen  
• Double tap on the first account  

For the WhatsApp task, the participant was asked to initiate a video call with the first 
contact on their chat list (see Table 3 for steps). For the YouTube session, the partici-
pant was asked to play the first video on their personal home page by following these 
steps: 

• Flick to ‘Upload and Record’ 
• Flick to the search button  
• Flick to personal account 
• Flick to first video on the home page  
• Double tap on video to play 
 



Table 3. WhatsApp's task modelled with Blind FLM. 

Task steps Operator Predicted unit time (s) 
 M 1.35 
Flick to chats F 0.12 
Flick to the compose button F 0.12 
Flick to archived chats F 0.12 
Flick to search field button F 0.12 
Flick to broadcast list F 0.12 
Flick to new group button F 0.12 
Flick to first chat F 0.12 
 M 1.35 
Double tap on chat to open DT 0.62 
 M 1.35 
Flick to the video call button F 0.12 
 M 1.35 
Double tap on button to call DT 0.62 

Predicted execution time 7.6 

Procedure. Sessions were held in a quiet room with a WiFi connections, the location 
varied depending on the participants and their affiliation. Each session lasted approxi-
mately 20 minutes. The participant was welcomed and the purpose of the study was 
explained. The participant was then given a chance to voice any questions. Next, a con-
sent form was vocalised and the participant's response recorded. Each task was pre-
sented to the participant and its steps were explained. The participant was asked to train 
each task until mistakes are no longer made. The participant was also asked to use 
his/her own iPhone for the study with a VoiceOver speech rate set on 80%. The speech 
synthesiser volume was set to the highest rate. All sessions were video recorded. 

Results. The three tasks were modelled with Blind FLM to predict execution times (see 
sample model for WhatsApp's task in Table 3). The tasks were first modelled without 
any mental thinking M operators. The mental thinking M operator was then incorpo-
rated in the model following the modified heuristic rules for M insertion. Observed 
execution times were logged using BORIS, where video recordings were played frame 
by frame. Twitter’s task was predicted to take 10.97 seconds and its execution time was 
observed at 13.28 seconds. The predicted execution time for the WhatsApp task was 
7.6 seconds (see Table 3) compared to the observed value of 8.7 seconds. For 
YouTube’s task, execution time was predicted at 3.8 seconds, while the observed value 
was 4.8 seconds. The accuracy of Blind FLM was evaluated using RMSE, which 
showed an average prediction error of 2.36%. Table 4 shows the predicted and observed 
execution times for the three tasks, as well as the RMSE for each of these tasks and the 
average RMSE.   

 



Table 4. Average observed time, predicted execution time, and computed RMSE for each of the 
three experimental tasks, as well as average RMSE. 

Task Observed time (s) Predicted time (s) RMSE 
Twitter 13.28 10.97 3.81% 
WhatsApp 8.7 7.6 2.01% 
YouTube 4.8 3.8 1.27% 

Average RMSE 2.36% 

Discussion. The results show that all three tasks completion times were under KLM’s 
suggested 21% RMSE [4]. For all tasks combined, the RMSE average was 2.36%. 
Twitter’s task was predicted and observed to be the longest, while YouTube’s task took 
the least time. This was also reflected with the RMSE value where a larger error per-
centage was incurred for Twitter's task. This indicates the effect of task complexity on 
the model's prediction error percentage. See Table 4. 

The mental thinking M operator’s unit value used in Blind FLM is the original value 
assigned to it with KLM [4]. Many studies similarly retained the original unit measure 
for M for conventional phones [7] and smartphones [14,20]. However, these models 
render visual applications. A previous study observed blind users’ web page interac-
tions via a screen reader to extend KLM [25]. The results of the study suggested the 
parallel recognition, decision, and auditory reception of the screen readers speech, di-
rectly affecting the unit time of the model’s operators. While this was also observed in 
the study (e.g. a participant not listening to the complete description of a visual ele-
ment), completely discarding the mental act M operator did not result in better accuracy. 
This added complexity to the mental act M operator for accessible interfaces merits a 
revisit in future research. 

For all tasks, Blind FLM underestimated the predicted time (see Table 4). Given that 
KLM can only model error-free tasks (a limitation passed on to its extensions, including 
Blind FLM), participants were asked to repeat a task until no errors were recorded. This 
repetition had lead the participants to caution and it indicates that the observed times 
are likely upper limits. Thus, the observed extra time highlight the time it took the par-
ticipants to process the instructions and carry out the task, i.e. contrary to natural inter-
action.  

5 Conclusion and Future Work 

KLM and mobile extensions to KLM have popularly been adopted in HCI to predict 
the time it takes a skilled user to complete an error-free task. Skilled users were inher-
ently assumed to be sighted and the applications relied on visual output. These models 
cannot thoroughly express visually impaired interaction, where the visual interface is 
replaced with an audible alternative. This paper makes two contributions. First, FLM 
[14] was modified further to render visually impaired mobile phone interaction. Some 
of FLM’s operators were retained, while other were excluded. A new operator, double 
tap DT, significant to blind user’s interaction was introduced to the model. These 



changes were applied after a series of interviews and observations with blind users and 
their touch-based smartphones. Second, a user study was conducted to validate the new 
model (Blind FLM), and evaluate its predictions on a number of tasks. The results 
showed that Blind FLM was able to accurately predict execution time well below the 
suggested 21% error [4]. 
 
The user studies carried out to modify KLM and validate the new model were per-
formed with an iPhone and limited to a set of applications (WhatsApp, YouTube, and 
Twitter). We intend to evaluate Blind FLM’s accuracy with other mobile phones and 
applications. The model’s operators’ unit times were not measured and instead original 
values from KLM [4] and FLM [14] were adopted. In future work, we plan to reexamine 
these values in controlled human-subject trails. This is particularly important to over-
come any inaccuracies due to FLM and Blind FLM’s varying application domains. It 
will also be interesting to reevaluate the mental thinking M operators' unit time and the 
effects of an audible interface and blind users listening abilities on its value [2]. Due to 
varying typing speeds, typing tasks in the validation studies were excluded from com-
putation. This exclusion lends itself to future research that considers visually impaired 
text input and its effect on tap T and double tap DT operators. A final future direction 
will apply Blind FLM on real-life design cases, where the model is used to compare the 
designs efficacy to make informed design choices. 
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