
HAL Id: hal-01658415
https://inria.hal.science/hal-01658415

Submitted on 7 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning-Based Compositional Parameter Synthesis for
Event-Recording Automata

Etienne André, Shang-Wei Lin

To cite this version:
Etienne André, Shang-Wei Lin. Learning-Based Compositional Parameter Synthesis for Event-
Recording Automata. 37th International Conference on Formal Techniques for Distributed Objects,
Components, and Systems (FORTE), Jun 2017, Neuchâtel, Switzerland. pp.17-32, �10.1007/978-3-
319-60225-7_2�. �hal-01658415�

https://inria.hal.science/hal-01658415
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Learning-based compositional parameter
synthesis for event-recording automata?

Étienne André1 and Shang-Wei Lin2

1 Université Paris 13, LIPN, CNRS, UMR 7030, France
2 SCSE, Nanyang Technological University, Singapore

Abstract. We address the verification of timed concurrent systems with
unknown or uncertain constants considered as parameters. First, we in-
troduce parametric event-recording automata (PERAs), as a new sub-
class of parametric timed automata (PTAs). Although in the non-parametric
setting event-recording automata yield better decidability results than
timed automata, we show that the most common decision problem re-
mains undecidable for PERAs. Then, given one set of components with
parameters and one without, we propose a method to compute an ab-
straction of the non-parametric set of components, so as to improve the
verification of reachability properties in the full (parametric) system.
We also show that our method can be extended to general PTAs. We
implemented our method, which shows promising results.

1 Introduction

Verifying distributed systems involving timing constraints is notoriously difficult,
especially when timing constants may be uncertain. This problems becomes even
more difficult (often intractable) in the presence of timing parameters, i. e., un-
known timing constants. Parametric reachability synthesis aims at synthesizing
timing parameter valuations for which a set of (usually bad) states is reachable.
Parametric timed automata (PTAs) [2] is a parametric extension of timed au-
tomata (TAs) to model and verify models involving (possibly parametric) timing
constraints and concurrency. Its high expressiveness comes with the drawback
that most interesting problems are undecidable [3].

Related work Despite undecidability of the theoretical problems, several mono-
lithic (non-compositional) techniques for parametric reachability synthesis in
PTAs have been proposed in the past, either in the form of semi-algorithms (a
procedure that is correct but may not terminate), or using approximations. In [2],
a basic semi-algorithm (called EFsynth in [14]) has been proposed: it explores
the symbolic state space until bad states are found, and gathers the associated
parameter constraints. In [12], approximated parametric reachability synthesis is
performed using counter-example guided abstraction refinement (CEGAR) tech-
niques for parametric linear hybrid automata, a class of models more expressive

? This work is partially supported by the ANR national research program “PACS”
(ANR-14-CE28-0002).

than PTAs. In [7], we proposed a point-based technique: instead of attacking
the reachability synthesis in a brute-force manner, we iterate on (some) inte-
ger parameter valuations, and derive for each of them a constraint around this
valuation that preserves the (non-)reachability of the bad locations. Although
numerous iterations may be needed, each of them explores a much smaller part
of the state space than the brute-force exploration of EFsynth, often resulting in
a faster execution than EFsynth.

Distributed systems are often made of a set of components interacting with
each other; taking advantage of the compositionality is a goal often desired to
speed up verification. In [11], a learning-based approach is proposed to automate
compositional verification of untimed systems modeled by labeled transition sys-
tems (LTS). For timed systems, we proposed a learning-based compositional ver-
ification framework [15] for event-recording automata (ERAs), a subclass of TAs
for which language inclusion is decidable [1]. This approach showed to be much
faster than monolithic verification.

The recent work [9] is close to our goal, as it proposes an approach for com-
positional parameter synthesis, based on the derivation of interaction and com-
ponent invariants. The method is implemented in a prototype in Scala, making
use of IMITATOR [5]. Whereas both [9] and our approach address reachability or
safety properties, the class of PTAs of [9] is larger; conversely, we add no further
restrictions on the models, whereas in [9] all clocks and (more problematically)
parameters must be local to a single component and cannot be shared.

Contribution In this work, we propose an approach relying on a point-based
technique for parametric reachability synthesis, combined with learning-based
abstraction techniques, for a subclass of PTAs, namely parametric event-recording
automata. We propose this subclass due to the decidability of the language in-
clusion in the non-parametric setting. We consider a set of parametric compo-
nents A (where parameters are dense in a bounded parameter domain D0) and
a set of non-parametric components B, with their parallel composition denoted
by A ‖ B. For each integer parameter valuation v not yet covered by a good

or bad constraint, we try to compute, by learning, an abstraction B̃ of B s.t.
v(A) ‖ B does not reach the bad locations. We then “enlarge” the valuation v

using the abstract model A ‖ B̃, which yields a dense good constraint; we prove
the correctness of this approach. If the learning fails to compute an abstraction,
we derive a counter-example, and we then replay it in the fully parametric model
A ‖ B, which allows us to derive very quickly a bad dense constraint. We iterate
until (at least) all integer points in D0 are covered. In practice, we cover not
only all rational-valued in D0, but in fact the entire parameter space (except for
one benchmark for which we fail to compute a suitable abstraction).

We propose the following technical contributions:

1. we introduce a parametrization of event-recording automata (PERAs);

2. we show that the reachability emptiness problem is undecidable for PERAs;

3. we then introduce our approach that combines iteration-based synthesis with
learning-based abstraction;

4. we implement our approach into a toolkit using IMITATOR and CV, and we
demonstrate its efficiency on several case studies.

Outline Section 2 introduces the necessary preliminaries. Section 3 recalls the
parametric reachability preservation [7]. Section 4 introduces parametric event-
recording automata, and proves the undecidability of the reachability emptiness
problem. Section 5 introduces our main contribution, and Section 6 evaluates it
on benchmarks. Section 7 concludes the paper.

2 Preliminaries

2.1 Clocks, parameters and constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-
valued variables that evolve at the same rate. A clock valuation is a function
µ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, µ+ d denotes the valuation such that (µ+ d)(x) = µ(x) + d, for
all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ, denoted by [µ]R,
as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown rational-
valued constants. A parameter valuation (or point) v is a function v : P → Q+.

In the following, we assume � ∈ {<,≤} and ./ ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +∑

1≤j≤M βjpj + d, with αi, βj , d ∈ Z. Similarly, plt denotes a parametric linear
term over P , that is a linear term without clocks (αi = 0 for all i). A con-
straint C (i. e., a convex polyhedron) over X ∪P is a conjunction of inequalities
of the form lt ./ 0. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation µ, µ(v(C)) denotes the Boolean value obtained by replacing
each clock x in v(C) with µ(x).

A guard g is a constraint over X ∪P defined by a conjunction of inequalities
of the form x ./ plt .

A parameter constraint K is a constraint over P . We write v |= K if v(K)
evaluates to true.⊥ (resp.>) denotes the special parameter constraint containing
no (resp. all) parameter valuations. We will sometime manipulate non-convex
constraints over P , i. e., finite unions of parameter constraints. Such non-convex
constraints can be implemented using finite lists of constraints, and therefore all
definitions extend in a natural manner to non-convex constraints.

A parameter domain is a box parameter constraint, i. e., a conjunction of
inequalities of the form p ./ d, with d ∈ N. A parameter domain D is bounded if,
for each parameter, there exists in D an inequality p�d (recall that, additionally,
all parameters are bounded below from 0 as they are non-negative). Therefore
D can be seen as a hypercube in M dimensions.

2.2 Parametric Timed Automata

Definition 1 (PTA). A parametric timed automaton (hereafter PTA) A is a
tuple (Σ,L, l0, X, P, I, E), where: i) Σ is a finite set of actions, ii) L is a finite
set of locations, iii) l0 ∈ L is the initial location, iv) X is a finite set of clocks,
v) P is a finite set of parameters, vi) I is the invariant, assigning to every l ∈ L
a guard I(l), vii) E is a finite set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are
the source and target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and
g is a guard.

Given a PTA A and a parameter valuation v, we denote by v(A) the non-
parametric timed automaton where all occurrences of a parameter pi have been
replaced by v(pi).

As usual, PTAs can be composed by performing their parallel composition,
i. e., their synchronized product on action names.

Definition 2 (Concrete semantics). Given a PTA A = (Σ,L, l0, X, P, I, E),
and a parameter valuation v, the concrete semantics of v(A) is given by the timed
transition system (S, s0,→), with S = {(l, µ) ∈ L × RH+ | µ(v(I(l))) is true},
s0 = (l0,0), and → consists of the discrete and delay transition relations:

– discrete transitions: (l, µ)
e→ (l′, µ′), if (l, µ), (l′, µ′) ∈ S, there exists e =

(l, g, a,R, l′) ∈ E, µ′ = [µ]R, and µ(v(g)) is true.

– delay transitions: (l, µ)
d→ (l, µ+d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, µ+d′) ∈ S.

A (concrete) run is a sequence ρ = s0γ0s1γ1 · · · snγn · · · such that ∀i, (si, γi, si+1) ∈
→. We consider as usual that concrete runs strictly alternate delays di and dis-

crete transitions ei and we thus write concrete runs in the form ρ = s0
(d0,e0)→

s1
(d1,e1)→ · · · . The corresponding timed word is (a0, t0), (a1, t1), · · · where ai is

the action of ei and ti =
∑i
j=0 di. Given a state s = (l, µ), we say that s is

reachable (or that v(A) reaches s) if s belongs to a run of v(A). By extension,
we say that l is reachable in v(A), if there exists a state (l, µ) that is reachable.
Given L/ ⊆ L, we say that L/ is reachable in v(A) if ∃l ∈ L/ s.t. l is reachable.

Let ρ = (l0, µ0)
(d0,e0)→ (l1, µ1)

(d1,e1)→ · · · (ln, µn)
(dn,en)→ · · · be a run of v(A).

The trace of this run (denoted by trace(ρ)) is the sequence e0e1 · · · en · · · , and
the untimed word of this run is a0a1 · · · an · · · , where ai is the action of ei for
all i. The trace set of v(A) is the set of traces associated with all runs of A.

Symbolic semantics Let us recall the symbolic semantics of PTAs (as in e. g.,
[4,14]). We define the time elapsing of a constraint C, denoted by C↗, as the
constraint over X and P obtained from C by delaying all clocks by an arbitrary
amount of time. That is, C↗ = {(µ, v) | µ |= v(C) ∧ ∀x ∈ X : µ′(x) = µ(x) +
d, d ∈ R+}. Given R ⊆ X, we define the reset of C, denoted by [C]R, as the
constraint obtained from C by resetting the clocks in R, and keeping the other
clocks unchanged. We denote by C↓P the projection of C onto P , i. e., obtained
by eliminating the clock variables (e. g., using Fourier-Motzkin).

A parametric zone is a convex polyhedron over X ∪ P in which constraints
are of the form x ./ plt , or xi−xj ./ plt , where xi, xj ∈ X and plt is a parametric
linear term over P .

A symbolic state is a pair s = (l, C) where l ∈ L is a location, and C its
associated parametric zone. The initial symbolic state of A is s0 =

(
l0, ({0} ∧

I(l0))↗ ∧ I(l0)
)
.

The symbolic semantics relies on the Succ operation. Given a symbolic state
s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′), with C ′ =(
[(C ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′). The Succ operation is effectively computable, using
polyhedra operations; also note that the successor of a parametric zone C is a
parametric zone (see e. g., [14]).

A symbolic run of a PTA is an alternating sequence of symbolic states and

edges starting from the initial symbolic state, of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm,
such that for all i = 0, . . . ,m− 1, we have ei ∈ E, and si+1 = Succ(si, ei).

Given a symbolic run s0
e0⇒ s1

e1⇒ · · ·, its trace is the sequence e0e1 · · ·. Two
runs (symbolic or concrete) are equivalent if they have the same trace.

3 Parametric reachability preservation

Let us briefly recall the parametric reachability preservation algorithm PRP [7].
Given a set of locations L/, PRP(A, v, L/) synthesizes a dense (convex) con-
straint K containing at least v and such that, for all v′ ∈ K, v′(A) preserves
the reachability of L/ in v(A). By preserving the reachability of L/ in v(A), we
mean that some locations of L/ are reachable in v′(A) iff they are in v(A). That
is, if v(A) is safe (i. e., it does not reach L/), then v′(A) is safe too. Conversely,
if v(A) is unsafe (i. e., L/ is reachable for some runs), then v′(A) is unsafe too.

Lemma 1 (Soundness of PRP [7]). Let A be a PTA, v a parameter valuation,
and L/ a subset of locations. Let K = PRP(A, v, L/).

For all v′ |= K, v′(A) reaches L/ iff v(A) reaches L/.

A specificity of PRP is that it does not aim at completeness; instead, it focuses
on behaviors “similar” to that of v(A) so as not to explore a too large part of the
state space, and outputs valuations neighboring v. A sort of completeness can
be achieved by iterating PRP on various parameter valuations: when v(A) has
computed K, the algorithm can be called again on a valuation v2 “neighbor” of
the result K, and so on until either the entire parameter space has been covered,
or when a certain coverage of a bounded parameter domain has been achieved
(e. g., 99 %). This iterated version is called PRPC (for PRP cartography), takes as
input a PTA A and a bounded parameter domain D0, and iteratively calls PRP
on parameter valuations of D0 with a given precision (e. g., at least all integer-
valued). This gives a cartography of D0 with a union Kgood of safe constraints
(valuations for which L/ is unreachable) and a union Kbad of unsafe constraints
(for which L/ is reachable). Although only the coverage of the discrete points
(e. g., integer-valued) can be theoretically guaranteed, PRPC often covers most
(if not all) of the dense state space within D0, and often outside too.

l1 l2 l3
a

xa ≤ p
b

c

Fig. 1: An example of a PERA

4 Parametric event-recording automata

Event-recording automata (ERAs) [1] are a subclass of timed automata, where
each action label is associated with a clock such that, for every edge with a label,
the associated clock is reset. We propose here a parametric extension of ERAs,
following the parameterization of TAs into PTAs.

Formally, let Σ be a set of actions: we denote by XΣ the set of clocks asso-
ciated with Σ, i. e., {xa | a ∈ Σ}. A Σ-guard is a guard on XΣ ∪ P .

Definition 3 (PERAs). A parametric event-recording automaton (PERA) is
a tuple (Σ,L, l0, P, I, E), where: i) Σ is a finite set of actions, ii) L is a finite set
of locations, iii) l0 ∈ L is the initial location, iv) P is a finite set of parameters,
v) I is the invariant, assigning to every l ∈ L a Σ-guard I(l), vi) E is a finite
set of edges e = (l, g, a, xa, l

′) where l, l′ ∈ L are the source and target locations,
a ∈ Σ, xa is is the clock to be reset, and g is a Σ-guard.

Just as for ERAs, PERAs can be seen as a syntactic subclass of PTAs: a
PERA is a PTA for which there is a one-to-one matching between clocks and
actions and such that, for each edge, the clock corresponding to the action is the
only clock to be reset.

Following the conventions used for ERAs, we do not explicitly represent
graphically the clock xa reset along an edge labeled with a: this is implicit.

Example 1. Fig. 1 depicts an example of PERA with 3 actions (and therefore 3
clocks xa, xb and xc), and one parameter p. Only clock xa is used in a guard.

It is well-known that the EF-emptiness problem (“is the set of parameter
valuations for which it is possible to reach a given location empty?”) is undecid-
able for PTAs [2,6]. Reusing the proof of [6], we show below that this remains
undecidable for PERAs.

Theorem 1. The EF-emptiness problem is undecidable for PERAs, even with
bounded parameters.

Proof. The proof works by adapting to PERAs the proof of [6, Theorem 1].

This negative result rules out the possibility to perform exact synthesis for
PERAs. Still, in the next section, we propose an approach that is sound, though
maybe not complete: the synthesized valuations are correct, but some may be
missing. More pragmatically, we aim at improving the synthesis efficiency.

A ‖ B̃ |= ϕ

B |= B̃

A ‖ B |= ϕ

(a) AGR proof rule

TL* Teacher

membership query

candidate query

yes/no

yes/no, counterexample

black-box

(b) TL∗ and Teacher

Fig. 2: AGR proof rule (left) and TL∗ (right)

5 Compositional parameter synthesis for PERAs

Fig. 2a recalls the common proof rule used in Assume-Guarantee Reasoning
(AGR), which is one of the compositional verification techniques. Given two
components A, B and a safety property ϕ, the proof rule tells us that if A
can satisfy the property ϕ under an assumption B̃ and B can guarantee this
assumption B̃, then we can conclude that A ‖ B satisfies ϕ.

5.1 Partitioning the system

The proof rule is presented in the context of two components. If a system consists
of more than two components, an intuitive way is to partition the components
into two groups to fit the proof rule. For example, if we have four componentsM1,
M2, M3, and M4, we could partition them as A = M1 ‖ M2 and B = M3 ‖ M4.
However, the number of possible partitions is exponential to the number of
components. In addition, an investigation [10] showed that a good partition is
very critical to AGR because it affects the verification performance significantly.
In this work, we adopt the following heuristics:

1. If a component has timing parameters, it is collected in group A;
2. If a component shares common action labels with the property, the compo-

nent is collected in group A.

Other components are collected in group B.
Heuristics 1 is required for our approach to be sound. Concerning heuris-

tics 2, in AGR, the ideal case is when A satisfies the property with the weakest
assumption B̃ that allows everything, i. e., A itself is sufficient to prove the prop-
erty no matter how B behaves. Based on this observation, the rationale behind
heuristics 2 is that if a component shares common action labels with the prop-
erty, it is very likely to be necessary to prove the property. We will show that
heuristics 2 indeed yields good performance in practice.

5.2 Computing an abstraction via learning

Let us explain how to automatically generate B̃ by learning for non-parametric
timed systems. We adopt the TL∗ algorithm [15], which is a learning algorithm to
infer ERAs. The TL∗ algorithm has to interact with a teacher. The interaction

between them is shown in Fig. 2b. Notice that only the teacher knows about
the ERA (say U) to be learned. During the learning process, the TL∗ algorithm
makes two types of queries: membership and candidate queries.

A membership query asks whether a word is accepted by U . After several
membership queries, TL∗ constructs a candidate ERA C, and makes a candidate
query for it. A candidate query asks whether an ERA accepts the same timed
language as U . If the teacher answers “yes”, then the learning process is finished,
and C is the ERA learned by TL∗. If the candidate C accepts more (or less) timed
words than U , the teacher answers “no” with a counterexample run ρ. TL∗ will
refine the candidate ERA based on the counterexamples provided by the teacher
until the answer to the candidate query is “yes”. See [15] for details.

The two condition checkings in Fig. 3 (A ‖ C |= ϕ and B |= C) can be
done by model checking, and counterexamples given by model checking can
also serve as counterexamples to the TL∗ algorithm. Fig. 3 shows our overall
procedure LearnAbstr(B,A, ϕ) that returns either an assumption (denoted by

Abstraction(B̃)) when it is proved that A ‖ B |= ϕ holds, or a counterexample
(denoted by Counterex(τ)) otherwise. Counterex and Abstraction are “tags” con-
taining a value, in the spirit of data exchanged in distributed programming or
types in functional programming; these tags will be used later on to differenti-
ate between the two kinds of results output by LearnAbstr. Also note that, in
our setting, we need a counterexample in the form of a trace τ , which is why
LearnAbstr returns Counterex(trace(ρ)).

Lemma 2. Let A,B be two ERAs. Assume LearnAbstr(B,A, ϕ) terminates with

result Abstraction(B̃). Then A ‖ B̃ |= ϕ and A ‖ B |= ϕ.

Proof. Abstraction(B̃) is returned only if A ‖ B̃ |= ϕ and B |= B̃. Thus, A ‖ B̃ |= ϕ
holds. In addition, according to Fig. 2a, we can conclude that A ‖ B |= ϕ.

5.3 Replaying a trace

In this section, we explain how to synthesize the exact set of parameter valuations
for which a finite trace belongs to the trace set.

TL∗

A ‖ C |= ϕ ?

B |= C ?

Abstraction(C)

ρ accepted by B ?

ρ accepted by A ? Counterex(trace(ρ))

Counterex(trace(ρ))

C

yes

no, ρ

no
refine C with ρ

no

refine C with ρ

yes
(i. e., A ‖ B |= ϕ)

no, ρ

yes
(i. e., A ‖ B 6|= ϕ)

yes
(i. e., A ‖ B 6|= ϕ)

Fig. 3: LearnAbstr(B,A, ϕ)

Algorithm 1: ReplayTrace(A, τ)

input : PTA A, finite trace τ = e0, e1, · · · en−1

output : Constraint over the parameters

1 s = s0
2 for i = 0 to n− 1 do s← Succ(s, ei) ;
3 return s↓P

Replaying a trace is close to two undecidable problems for PTAs: i) the
reachability of a location is undecidable for PTAs [2], and therefore this result
trivially extends to the reachability of a single edge; ii) the emptiness of the set
of valuations for which the set of untimed words is the same as a given valuation
is undecidable for PTAs [8] (where a proof is provided even for a unique untimed
word). Nevertheless, computing the set of parameter valuations for which a given
finite trace belongs to the trace set can be done easily by exploring a small part
of the symbolic state space as follows.

We give our procedure ReplayTrace(A, τ) in Algorithm 1. Basically, ReplayTrace
computes the symbolic run equivalent to τ , and returns the projection onto P of
the last symbolic state of that run. The correctness of ReplayTrace comes from
the following results (proved in, e. g., [13]):

Lemma 3. Let A be a PTA, and let ρ be a run of A reaching (l, C). Let v be a
parameter valuation. There exists an equivalent run in v(A) iff v |= C↓P .

Proof. From [13, Propositions 3.17 and 3.18].

Lemma 4. Let A be a PTA, let v be a parameter valuation. Let ρ be a run
of v(A) reaching (l, µ). Then there exists an equivalent symbolic run in A reaching
(l, C), with v |= C↓P .

Proof. From [13, Proposition 3.18].

Proposition 1. Let A be a PTA, let τ a trace of v0(A) for some v0. Let K =
ReplayTrace(A, τ). Then, for all v, τ is a trace of v(A) iff v |= K.

Proof. τ is a trace of v0(A) for some v0, and therefore it corresponds to some
run ρ of v0(A). Then from Lemma 4 there exists an equivalent symbolic run
in A reaching (l, C), with v0 |= C↓P . Now, from Lemma 3, for all v, there exists
an equivalent run in v(A) iff v |= C↓P . As ReplayTrace(A, τ) returns exactly
K = C↓P therefore τ is a trace of v(A) iff v |= K.

5.4 Exploiting the abstraction and performing parameter synthesis

We give our procedure in Algorithm 2: it takes as arguments a set of PERA
components A, a set of ERA components B, a bounded parameter domain D0

and a set of locations to be avoided. We maintain a safe non-convex parame-
ter constraint Kgood and an unsafe non-convex parameter constraint Kbad , both

Algorithm 2: CompSynth(A,B, D0, L
/)

input : PERA A, ERA B, parameter domain D0, subset L/ of locations
output : Good and bad constraint over the parameters

1 Kbad ← ⊥ ; Kgood ← ⊥
2 while D0 ∩ N ∩ (Kbad ∪Kgood) 6= ∅ do
3 Pick v in D0 ∩ N ∩ (Kbad ∪Kgood)

4 switch LearnAbstr(B, v(A), AG¬L/) do

5 case Abstraction(B̃)

6 Kgood ← Kgood ∪ PRP(A ‖ B̃, v, L/)
7 case Counterex(τ)
8 Kbad ← Kbad ∪ ReplayTrace(A ‖ B, τ)

9 return (Kgood ,Kbad)

initially containing no valuations (line 1). Then CompSynth iterates on integer
points: while not all integer points in D0 are covered, i. e., do not belong to
Kbad ∪ Kgood (line 2), such an uncovered point v is picked (line 3). Then, we
try to learn an abstraction of B w.r.t. v(A) (line 5) so that L/ is unreachable
(“AG¬L/” stands for “no run should ever reach L/”). If an abstraction is suc-

cessfully learned, then PRP is called on v and the abstract model A ‖ B̃ (line 6);
the constraint Kgood is then refined. Note that Kgood is refined because, if an
abstraction is computed, then necessarily the property is satisfied and therefore
the (abstract) system is safe. Alternatively, if LearnAbstr fails to compute a valid
abstraction, then a counterexample trace τ is returned (line 7); then this trace
is replayed using ReplayTrace (line 8), and the constraint Kbad is updated.

5.5 Soundness

Proposition 2 (soundness). Let A ‖ B be a PERA and D0 be a bounded pa-
rameter domain. Assume CompSynth(A,B, D0, L

/) terminates with result (Kgood ,Kbad).
Then, for all v i) if v |= Kgood then v(A ‖ B) does not reach L/; ii) if

v |= Kbad then v(A ‖ B) reaches L/.

Proof. i) Assume v |= Kgood . From Algorithm 2, Kgood is a finite union of
convex constraints, each of them being the result of a call to PRP. Necessarily,
v |= K, where K is one of these convex constraints, resulting from a call to

(A ‖ B̃, v′), for some v′. From Lemma 2, v′(A) ‖ B̃ |= (AG¬L/). Since B and

B̃ are non-parametric, we can write v′(A ‖ B̃) |= (AG¬L/), i. e., v′(A ‖ B̃)

does not reach L/. From Lemma 1, for all v′′ |= K, v′′(A ‖ B̃) does not

reach L/. Now, since B̃ is a valid abstraction of B (i. e., B |= B̃), therefore B̃
contains more behaviors than B. Therefore for all v′′ |= K, v′′(A ‖ B) does
not reach L/ either. Since v |= K, therefore v(A ‖ B) does not reach L/.

ii) Assume v |= Kbad . From Algorithm 2, Kbad is a finite union of convex
constraints, each of them being the result of a call to ReplayTrace. Necessarily,

v |= K, where K is one of these convex constraints, resulting from a call to
ReplayTrace(A ‖ B, τ) for some trace τ reaching L/. This trace was generated
by LearnAbstr for some v′ and is a valid counter-example, i. e., this trace τ
reaches L/ in v′(A) ‖ B. From Lemma 4, this trace is also a trace reaching L/

in A ‖ B. Then, from Proposition 1, for all v′′ |= K, τ is a valid trace of
v′′(A ‖ B) which reaches L/ and therefore v′′(A ‖ B) reaches L/. Since
v |= K, then v(A ‖ B) reaches L/.

Proposition 3 (integer-completeness). Let A be a PERA and D0 be a bounded
parameter domain. Assume CompSynth(A,B, D0, L

/) terminates with result (Kgood ,Kbad).
Then, for all v ∈ D0 ∩ N, v ∈ Kgood ∪Kbad .

Proof. From Algorithm 2 (line 2).

Remark 1. Note that the integerness can be scaled down to, e. g., multiples of 0.1,
or in fact arbitrarily small numbers. The time needed to perform the verification
might grow, but the coverage of all these discrete points is still guaranteed.

6 Experiments

6.1 Handling general PTAs

So far, we showed that our framework is sound for PERAs. We now show that,
since we address only reachability, any PTA can be transformed into an equiv-
alent PERA, and therefore our framework is much more general. The idea is
that, since we are interested in reachability properties, we can rename some of
the actions so that the PTA becomes a PERA.

Basically, we remove any action labels along the edges, and we add them
back as follows: 1) if clock x is reset along an edge, the action label will be ax;
2) if no clock is reset along an edge, the action label will be na, where na is a
(unique) label, the clock associated to which (say xna) is never used (in guards
and invariants) in the PERA; note that, by definition, xna is reset along each
edge labeled with na (although this has no impact in the PERA); 3) if more
than one clock is reset along the edge, we split the edge into 2 consecutive edges
in 0-time, where each clock is reset after the other, following the mechanism
described above. Note that the 0-time can be ensured using an invariant x ≤ 0,
where x is the first clock to be reset.

Basically, our transformation leaves the structure of the PTA unchanged
(with the exception of a few transitions in 0-time to simulate multiple simulta-
neous clock resets). For each parameter valuation, the resulting PERA has the
same timed language as the original PTA – up to action renaming and with
the introduction of some 0-time transitions (that could be considered as silent
transitions if the language really mattered). Therefore, reachability is preserved.

Note that this construction provides an alternative proof for Theorem 1.

Example 2. Fig. 4a shows a PTA, and Fig. 4b its translation into an equivalent
PERA. (Recall that clock resets are implicit in PERAs.)

l1 l2

y = 1
a {x := 0}

a

x = p
b {x, y := 0}

(a) A PTA

l1 l2 l′2
x ≤ 0

y = 1
ax

na

x = p
ax

x ≤ 0
ay

(b) Translation to a PERA

Fig. 4: General PTA and its translation to a PERA

Remark 2. In our benchmarks, although we only address reachability, action
labels are not entirely useless: they are often used for action synchronization be-
tween components. Therefore, renaming all actions is not a valid transformation,
as components may not synchronize anymore the way it was expected. In fact,
we ensured that our models either only work using interleaving (no action syn-
chronization) or, when various components of a PTA synchronize on an action
label, at most one clock is reset along that transition for all PTAs synchronizing
on this action label.

6.2 Experiments

We implemented our method in a toolkit made of the following components:

– IMITATOR [5] is a state of the art tool for verifying real-time systems modeled
by an extension of PTAs with stopwatches, broadcast synchronization and
integer-valued shared variables. IMITATOR is implemented in OCaml, and
the polyhedra operations rely on the Parma Polyhedra Library (PPL).

– CV (Compositional Verifier) is a prototype implementation (in C++) of the
proposed learning-based compositional verification framework for ERAs.

The architecture of our toolkit is shown in Fig. 5. The leading tool is IMITA-
TOR, that takes the input model (in the IMITATOR input format), and eventu-
ally outputs the result. IMITATOR implements both algorithms CompSynth and
ReplayTrace, while CV implements LearnAbstr. The interface between both tools
is handled by a Python script, that is responsible for retrieving the abstraction
of B computed by CV and re-parameterizing the components A. We used IMI-
TATOR 2.9-alpha1, build 2212.3 Experiments were run on a MacBook Pro with
an i7 CPU 2.67GHz and 3,7 GiB memory running Kubuntu 14.04 64 bits.

Benchmarks We evaluated our approach using several benchmarks, with var-
ious (reachability) properties. We give in Table 1 the case studies, with the
numbers of PERAs in parallel, of clocks (equal to the number of actions, by
definition) and of parameters, followed by the specification number; then, we

3 Sources, binaries, models and results are available at imitator.fr/static/FORTE17

imitator.fr/static/FORTE17

IMITATOR

parser core Python interface learning

CV

Constraint

Input model

Fig. 5: Architecture of our toolkit

PRPC CompSynth
Case study #A #X #P Spec EFsynth

#iter total #abs #c.-ex. learning total

FMS-1 6 18 2
1 0.299 2 0.654 1 1 0.074 0.136
2 0.010 1 0.372 0 1 0.038 0.046
3 0.282 1 0.309 1 0 0.090 0.242

FMS-2 11 37 2

1 T.O. - T.O. 1 1 84.2 88.9
2 T.O. - T.O. 1 0 81.4 85.2
3 0.051 - T.O. 0 2 1.10 2.44
4 0.062 - T.O. 0 1 1.42 1.53
5 T.O. - T.O. 1 0 31.4 40.8
6 T.O. - T.O. 1 0 37.2 42.4

AIP 11 46 2

1 0.551 - T.O. 0 1 0.086 0.114
2 2.11 - T.O. 0 1 1.22 1.25
3 3.91 - T.O. 0 1 8.50 8.54
4 0.235 - T.O. 1 1 8.39 8.42
5 T.O. - T.O. 1 0 0.394 0.871
6 T.O. - T.O. 1 0 5.32 9.58
7 T.O. - T.O. 1 0 1.76 3.19
8 T.O. - T.O. 1 0 1.13 4.35
9 T.O. - T.O. 1 1 0.762 1.84
10 0.022 - T.O. 0 1 0.072 0.094

Fischer-3 5 12 2 2.76 4 14.0 0 1 - T.O.
Fischer-4 6 16 2 T.O. - T.O. 0 1 - T.O.

Table 1: Experiments: comparison between algorithms

compare the computation time (in s) for EFsynth, PRPC, and CompSynth (for
which we also give the number of abstractions and counter-examples generated
by LearnAbstr, and the learning time required by LearnAbstr). “T.O.” denotes
a timeout (> 600 s). FMS-1 and -2 are two versions of a flexible manufactur-
ing system [15] (Fig. 1 depicts the conveyor component of FMS-1). AIP is a
manufacturing system producing two products from two different materials [15].
Fischer-3 (resp. 4) is a PERA version of the mutual exclusion protocol with 3
(resp. 4) processes; it was obtained using the transformation in Section 6.1.

Comparison Although reachability synthesis is intractable for PERAs (Theo-
rem 1), CompSynth always terminates for our case studies (except for Fischer,
for which the abstraction computation is too slow). In contrast, EFsynth does
often not terminate. In addition, CompSynth always gives a complete (dense)
result not only within D0 but in fact in the entire parameter domain (QM+).

First, CompSynth outperforms PRPC for all but one benchmark: this suggest
to use CompSynth instead of PRPC in the future.

Second, CompSynth is faster than EFsynth in 13/20 cases. In addition, whereas
EFsynth often does not terminate, CompSynth always outputs a result (except
for Fischer). In some cases (FMS-2:3, FMS-2:4, AIP:4), EFsynth is much faster
because it immediately derives ⊥, whereas CompSynth has to compute the ab-

CompSynth
Case study #A #X #P Spec D0 #abs #c.-ex. find next point learning total

FMS-2 11 37 2 1

2,500 1 1 0.0 81.0 85.7
10,000 1 1 0.1 82.5 87.3

250,000 1 1 2.2 82.0 89.0
1,000,000 1 1 8.9 83.1 96.7

25,000,000 1 1 221.2 83.1 309.0
100,000,000 1 1 888.1 83.5 976.4

Table 2: Experiments: scalability w.r.t. the reference domain

straction first. Even in these unfavorable cases, CompSynth is never much be-
hind EFsynth: the worst case is AIP:4, with 8 seconds slower. This suggests that
CompSynth may be preferred to EFsynth for PERAs benchmarks.

Interestingly, in almost all benchmarks, at most one abstraction (for good val-
uations) and one counter-example (for bad valuations) is necessary for CompSynth.
In addition, most of the computation time of CompSynth (71 % in average) comes
from LearnAbstr; this suggests to concentrate our future optimization efforts on
this part. Perhaps an on-the-fly composition mixed with synthesis could help
speeding-up this part; this would also solve the issue of constraints ⊥ synthe-
sized only after the abstraction phase is completed (FMS-2:3, FMS-2:4, AIP:4).

For Fischer, our algorithm is very inefficient: this comes from the fact that
the model is strongly synchronized, and the abstraction computation does not
terminate within 600 s. In fact, in both cases, LearnAbstr successfully derives very
quickly a counter-example that is used by CompSynth to immediately synthesize
all “bad” valuations; but then, as LearnAbstr fails in computing an abstrac-
tion, the good valuations are not synthesized. Improving the learning phase for
strongly synchronized models is on our agenda.

We were not able to perform a comparison with [9]; the prototype of [9]
always failed to compute a result. In addition, our Fischer benchmark does not
fit in [9] as Fischer makes use of shared parameters.

Size of the parameter domain Algorithm 2 is based on an enumeration of
integer points: although we could use an SMT solver to find the next uncovered
point, in our implementation we just enumerate all points, and therefore the size
of D0 may have an impact on the efficiency of CompSynth. Table 2 shows the
impact of the size ofD0 w.r.t. CompSynth. “find next point” is the time to find the
next uncovered point (and therefore includes the enumeration of all points). The
overhead is reasonable up to 1,000,000 points, but then becomes very significant.
Two directions can be taken to overcome this problem for very large parameter
domains: 1) using an SMT solver to find the next uncovered point; or 2) using
an on-the-fly refinement of the precision (e. g., start with multiples of 100, then
10 for uncovered subparts of D0, then 1. . . until D0 ⊆ Kbad ∪Kgood).

Partitioning Finally, although the use of heuristic 2 is natural, we still wished
to evaluate it. Results show that our partitioning heuristic yields always the best
execution time, or almost the best execution time.

7 Conclusion and perspectives

We proposed a learning-based approach to improve the verification of parametric
distributed timed systems, that turns to be globally efficient on a set of bench-
marks; most importantly, it outputs an exact result for most cases where the
monolithic procedure EFsynth fails.

Among the limitations of our work is that the input model must be a PERA
(although we provide an extension to PTAs), and that all parametric ERAs must
be in the same component A. How to lift these assumptions is on our agenda.

Another perspective is the theoretical study of PERAs, i. e., their expressive-
ness and decidability (beyond EF-emptiness, that we proved to be undecidable).

Finally, addressing other properties than reachability is also on our agenda.

Acknowledgment We warmly thank Lăcrămioara Aştefănoaei for her appreciated
help with installing and using the prototype tool of [9].

References

1. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science 211(1-2), 253–273 (1999)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC.
pp. 592–601. ACM (1993)

3. André, É.: What’s decidable about parametric timed automata? In: FTSCS. CCIS,
vol. 596, pp. 1–17. Springer (2015)

4. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: A tool for analyzing
robustness in scheduling problems. In: FM. LNCS, vol. 7436. Springer (2012)

6. André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed au-
tomata. In: ICFEM. LNCS, vol. 10009, pp. 400–416. Springer (2016)

7. André, É., Lipari, G., Nguyen, H.G., Sun, Y.: Reachability preservation based
parameter synthesis for timed automata. In: NFM. LNCS, vol. 9058, pp. 50–65.
Springer (2015)

8. André, É., Markey, N.: Language preservation problems in parametric timed au-
tomata. In: FORMATS. LNCS, vol. 9268, pp. 27–43. Springer (2015)

9. Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C., Ruess, H.: Compositional
parameter synthesis. In: FM. LNCS, vol. 9995, pp. 60–68 (2016)

10. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evalu-
ation of automated assume-guarantee reasoning. TOSEM 17(2), 7:1–7:52 (2008)

11. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: TACAS. LNCS, vol. 2619, pp. 331–346 (2003)

12. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to param-
eter synthesis for linear hybrid automata. In: HSCC. LNCS, vol. 4981 (2008)

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52-53, 183–220 (2002)

14. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. Transactions on Software Engineering 41(5), 445–461 (2015)

15. Lin, S.W., André, É., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for com-
positional verification of timed systems. TSE 40(2), 137–153 (2014)

	Learning-based compositional parameter synthesis for event-recording automata

