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Abstract. Software defined network (SDN) is an emerging network architecture 

that has drawn the attention of academics and industry in recent years. Affected 

by investment protection, risk control and other factors, the full deployment of 

SDN will not be finished in the short term, thus it results into a coexistence state 

of traditional IP network and SDN which is named hybrid SDN. In this paper, we 

formulate the SDN controller’s optimization problem for load balancing as a 

mathematical model. Then we propose a routing algorithm Dijkstra-Repeat in 

SDN nodes which can offer disjoint multipath routing. To make it 

computationally feasible for large scale networks, we develop a new Fast Fully 

Polynomial Time Approximation Schemes (FPTAS) based Lazy Routing Update 

(LRU).  

1   Introduction 

Load balancing is a key technique for improving the performance and scalability of the 

Internet. It aims to distribute traffic so as to optimize some performance criteria. Load 

balancing using OSPF may cause network congestion as they are non-traffic-aware. 

The chief problem is that very often many comparable traffic flows are misled to 

converge on bottleneck links since these algorithms are oblivious to traffic 

characteristics and link loading. 

SDN is an emerging innovator to the traditional networking paradigm, which 

unleashes a powerful new paradigm offering flow-level traffic control and 

programmable interfaces to network operators. However, fully deploying the SDN in 

the network is by no means an easy job. We may encounter economical, organizational 

and technical challenges [1]. As a result, a full deployment of SDN, i.e., all the router 

nodes support SDN and can be centrally controlled by the controllers, in the network 

will not work out in the short term. Thus a hybrid SDN deployment, i.e., SDN/OSPF 

hybrid network is a better choice. We adopt the hybrid architecture as the research 

background in this work. In a hybrid SDN, only the SDN nodes can be controlled by 

the centralized controller, while the legacy nodes still use the traditional shortest path 

routing protocol OSPF to forward packets. 

[2] is the first paper to address network performance issues in an incrementally 

deployed SDN network. It formulates the load balancing as a linear programming 

problem and refines a FPTAS algorithm to solve it. But [2] only uses a single shortest 

path to optimize the traffic passing through SDN nodes and the SDN controller must 

recompute the routing after forwarding one flow. The network performance is thus 



limited. We propose disjoint multipath calculation in SDN nodes. For the flows directed 

to the same destination, the SDN controller can map them to disjoint paths which could 

ensure that the flows do not aggregate until they reach the destination node. We also 

formulate the SDN controller’s optimization problem for load balancing and develop a 

Lazy Routing Update (LRU) scheme for solving these problems, which belongs to Fast 

Fully Polynomial Time Approximation Schemes (FPTAS). LRU can decrease the 

routing calculation in the SDN controller. It does this by spreading traffic load across 

all feasible links in the network. In simpler terms it means placing traffic where the 

capacity exists.  

2   Problem Formulation 

2.1   Hybrid Network Scenario 

In the SDN/OSPF hybrid network, a centralized SDN controller computes the 

forwarding table for a set of SDN nodes. The first packet of every flow passing through 

SDN nodes is sent to the SDN controller, and the following operations are done by the 

SDN controller. The rest of the nodes in the network run traditional network protocol 

OSPF and forward packets along the shortest paths. In addition to forwarding packets, 

the SDN nodes forward some traffic measurement information to the SDN controller. 

The controller uses these information along with information disseminated in the 

network by OSPF-TE to dynamically map the routing tables to the SDN nodes in order 

to change traffic conditions. Note that in OSPF-TE, the nodes also exchange available 

bandwidth information on the links in the network. Therefore the controller knows the 

current OSPF costs as well as the amount of traffic flow on each link (averaged over 

some time period). 
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Fig.1. A hybrid network scenario            Fig.2. Shortest Path Tree to Node 13 

 

Figure 1 shows an example of hybrid network topology from [2]. Nodes 2, 9, 14 are 

SDN nodes and the rest nodes are legacy nodes. SDN nodes 2, 9, 14 are controlled 

externally. We will use this network to illustrate some of the concepts that we outline 



in the rest of the paper. We assume that all the links in the network are bidirectional 

and all links have the same OSPF cost. Each flow enters the network at its ingress node 

and has to visit a set of nodes before egressing the network at its egress node. The traffic 

that goes from source to destination without transiting through a SDN node will be 

referred to as uncontrollable traffic. If the source of a packet is a SDN node, or if it 

passes through at least one SDN node before it reaches its destination then the traffic 

will be called controllable traffic. In other words, controllable traffic comprises of 

packets that pass through at least one SDN node if the packets are routed using standard 

OSPF. There is at least an opportunity at the SDN nodes to manipulate the path of 

controllable traffic. 

2.2   Optimization Problem Definition 

Given a directed graph ( , )G N E , where the N and E  are set of n  nodes and 

set of m edges, respectively, with each edge capacity retrievable from a function 

( )c e . The background traffic ( )b e  on each link e  is readily retrieved or estimated 

by the controller through the dynamic information disseminated by OSPF-TE [6]. 

( )g e  is the edge residual capacity and  ( ) ( ) ( )g e c e b e  . There are h  flows 

defined as a set of ingress-egress pairs, 
,{( ) : , , 1,..., }i i i iK s t s t N i h    and 

associated to them are demands, { ( ) : }D d k k K  . Note that we use edge to 

represent network link. Let kP  be the set of paths between ks  to kt  in G , and let 

kP P . Let ( )f p  denotes the amount of flow along path p .  

The primal linear program (LP) formulation is 
 

max      

( ) ( ),
kp P

f p d k k K


    (1) 

( ) ( ),
kp P

f p g e e E


    (2) 

( ) 0,f p p P    (3) 

   

(1) denotes that the sum of flows on all paths in kP  is greater than the demand of 

ingress-egress pairs. (2) enforces the edge capacity constraints which ensure that the 

total flow on the edge is less than the difference between the edge capacity ( )c e  and 

the background traffic ( )b e . (3) ensures non-negative flow on each candidate path. 

The goal is to maximize the throughput   while not violating capacity constraints. If 



the optimal    then the current flow can be routed at the SDN nodes while 

ensuring that all edge utilizations are less than one.  

We now associate dual variables ( )l e with each edge capacity constraint (2) and  

( )z k  for the demand constraint (1). It is interesting to note that its dual LP problem 

of the above can be shown to be 

 

min    ( ) ( )
e E

l e g e
  

( ) ( ), ,
e P

l e z k k K p P


      (1) 

( ) ( ) 1
k
z k d k   (2) 

( ) 0,l e e E    (3) 

( ) 0,z k k K    (4) 

 

Note that this problem is a constrained version of the maximum concurrent flow 

problem, we can adapt the Fully Polynomial Time Approximation Scheme (FPTAS) 

developed for a generic maximum concurrent flow problem [3] to this case at SDN 

controller.  

3  Load Balancing In Hybrid SDN Network 

3.1  Disjoint Multipath Calculation 

The proposed disjoint multipath scheme determines paths as follows. First, a path 

between nodes i and j is found as the shortest path by Dijkstra algorithm. The Dijkstra 

algorithm is then repeated after excluding network links used in the first shortest path 

to calculate the second shortest path. After that, Dijkstra algorithm is further repeated 

after excluding those network links used in the first or second shortest path. This 

process is repeated until no more paths are obtained. The algorithm of disjoint multipath 

calculation is named Dijkstra-Repeat in the following of this paper. Obviously, the 

Dijkstra-Repeat algorithm for computing the routing table for the SDN nodes could 

ensure that routing will be along loop-free shortest paths while minimizing the 

congestion in the network. 

Forwarding is a method which maps incoming packets to outgoing links. The SDN 

nodes act basically as forwarding elements. If there are multiple next hops for a given 

destination, then the SDN nodes can split traffic to the destination in a pre-specified 

manner across the multiple next hops, subject to load balancing. 



3.2  LRU: A new FPTAS algorithm 

We assume that the traffic matrix and the topology of the network are steady for a short 
period. The locations and number of the SDN nodes can be fixed and determined based 

on greedy algorithms [2]. The   is defined as the same value in [2], which is a function 

of the desired accuracy level  , the number of nodes n  and the number of edges m . 

The algorithm then operates iteratively. At the beginning of each cycle, the controller 

schedules controllable traffic with awareness of background traffic ( )b e  on each link 

by OSPF-TE, so as to optimize the overall load balancing. The dual weight of each edge 

e E is initialized to ( ) / ( )l e g e  , where ( )g e is the remaining capacity of each 

edge. In each iteration, it first computes the multiple admissible paths utP  between 

SDN nodes u and other nodes t with Dijkstra-Repeat. For the primal problem, the 

algorithm forwards flow along the path p , while p  is selected from utP  with 

hashing. The amount of flow ( )f u sent along the path p  is determined by the 

minimum remaining link capacity ( )g e  on p and the controllable traffic demand 

( )d u  between the two terminals of the path. As a result, the primal variable utR  and 

the primal flow demand ( )d u  is updated by ( )f u , respectively. After updating the 

primal variables, the algorithm continues to update the dual variables ( )l e  related to 

path p . The algorithm stops when 1LD  . 

Algorithm for Load Balancing   

DL←0 

l(e)←δ/g(e),eϵE  Rut←0,uϵSN,tϵN 

while DL<1 do 

  for each demand d(u) having the same destination tϵN 

    Put: admissible paths set with Dijkstra-Repeat 

    while DL<1 and d(u)>0 do 

      select path p from Put with hashing 

      c=mineϵpg(e) 

      f(u)=min{d(u),c},∀u 

      Route f(u) flow from each u to t 

      Rut=Rut+f(u) 

      d(u)=d(u)-f(u) 

l(e)=l(e)(1+ωf(u)/c(e)) 

Recompute DL=ƩeϵEg(e)/l(e) 

end while 

end for    

end while 

φ=min Rut/D 

Output: φ 



The algorithm follows in the similar vein as [3]. The correctness of the algorithm as 

well as the running time analysis is identical to the results in the paper and is therefore 

omitted. Actually, the computational complexity of the FPTAS algorithm is at most a 

polynomial function of the network size and 1/   [3]. Thus, the computational 

complexity of our approximation algorithm is also polynomial. There are however 

some key differences in the implementation of the algorithm. One key difference is that 

we use disjoint multipath while [3] uses a single shortest path. In fact, multipath routing 

can significantly reduce congestion in hot spots by distributing traffic to unused 

network resources instead of routing all the traffic on a single path. That is, multipath 

routing offers better load balancing and makes full utilization of network resources [4]. 

The other key difference is that our FPTAS algorithm is based on Lazy Routing 

Update. In each iteration, [3] has to compute the lightest admissible path from all SDN 

nodes to a given destination using path finding algorithm with the dual weights ( )l e  

(not OSPF costs). The most time consuming step in practical cases is the shortest path 

computation. In [3], the SDN controller recomputes the shortest path after routing one 

flow, resulting in frequent updates on routers, which is a so time consuming process in 

each iteration of FPTAS algorithm that it doesn't fit in such an online routing algorithm. 

So in our scenario, at the beginning of each cycle, the controller calculates admissible 

paths set using Dijkstra-Repeat algorithm with the traffic information from OSPF-TE. 

And in a short period, the SDN controller maps the flows aggregated at SDN nodes to 

multiple admissible paths with hashing. This process of augmenting flow is repeated 

until the problem is dual feasible. We call that Lazy Routing Update (LRU), as shown 

in Algorithm for Load Balancing.  

4    Experiments And Evaluation 

In this section, we conduct the simulation experiments. We ran two groups of 

experiments to check the effectiveness of the algorithm using the following two 

topologies: (i) The Geant (Europe) topology from [5]. This topology has 22 nodes and 

36 links; (ii) The Abilene topology from [5]. This topology has 12 nodes and 30 links. 

For Geant and Abilene topology, the link weights and the link capacities are given, and 

we can also get the traffic matrices of the two topologies from [5]. The number of SDN 

nodes for the two topologies are determined as 6 and 3, respectively. The location of 

the SDN nodes are decided by the incremental greedy approach stated in [2]. 

For Geant and Abilene topology, we carry out twenty experiments with twenty 

traffic matrices from [5] on each topology to compare with the maximum link 

utilization in OSPF, HSTE[11] and our LRU. We carry out the two groups of 

experiments to illustrate the practicality of our algorithm, as the two topologies used in 

the experiments are real and the traffic is actually measured. The results are shown in 

Figure 4 and Figure 5. As the figures illustrate, our algorithm LRU in the figures obtains 

a lower maximum link utilization compared with the other two algorithms. Compared 

with HSTE, LRU can reduce the overall maximum link utilization by 10% and 9% for 

Geant and Abilene topologies, respectively. Compared with OSPF, the reductions are 

20% and 17%. 



 
 

Fig.4. Comparison of Maximum Link Utilization of Geant 

 

 
 

Fig.5. Comparison of Maximum Link Utilization of Abilene 

5   Conclusion 

The SDN/OSPF hybrid network load balancing is a popular problem that raises 

people’s attention worldwide. It deviates from the traditional load balancing scenario, 

where the flows are always routed along the shortest paths. The emerging of SDN 

provides a new method to solve the load balancing problem. It can centrally control the 

flows that directed to the outgoing links of the SDN nodes, which is similar with the 

model of multi-commodity. In this paper, we propose a new FPTAS algorithm LRU to 

solve the load balancing problems in SDN/OSPF hybrid network. Compared with other 

load balancing algorithms, the proposed algorithm reduces the SDN calculation and 

obtains a lower maximum link utilization. In the future work, we will carry out the 

experiments on the testbed and consider more hybrid SDN network types. 
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