
HAL Id: hal-01647998
https://inria.hal.science/hal-01647998

Submitted on 24 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multipath Load Balancing in SDN/OSPF Hybrid
Network

Xiangshan Sun, Zhiping Jia, Mengying Zhao, Zhiyong Zhang

To cite this version:
Xiangshan Sun, Zhiping Jia, Mengying Zhao, Zhiyong Zhang. Multipath Load Balancing in
SDN/OSPF Hybrid Network. 13th IFIP International Conference on Network and Parallel Com-
puting (NPC), Oct 2016, Xi’an, China. pp.93-100, �10.1007/978-3-319-47099-3_8�. �hal-01647998�

https://inria.hal.science/hal-01647998
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Multipath Load Balancing In SDN/OSPF Hybrid

Network

Xiangshan Sun, Zhiping Jia* ,Mengying Zhao,Zhiyong Zhang

 School of Computer Science and Technology

Shandong University, China

Email: jzp@sdu.edu.cn

Abstract. Software defined network (SDN) is an emerging network architecture

that has drawn the attention of academics and industry in recent years. Affected

by investment protection, risk control and other factors, the full deployment of

SDN will not be finished in the short term, thus it results into a coexistence state

of traditional IP network and SDN which is named hybrid SDN. In this paper, we

formulate the SDN controller’s optimization problem for load balancing as a

mathematical model. Then we propose a routing algorithm Dijkstra-Repeat in

SDN nodes which can offer disjoint multipath routing. To make it

computationally feasible for large scale networks, we develop a new Fast Fully

Polynomial Time Approximation Schemes (FPTAS) based Lazy Routing Update

(LRU).

1 Introduction

Load balancing is a key technique for improving the performance and scalability of the

Internet. It aims to distribute traffic so as to optimize some performance criteria. Load

balancing using OSPF may cause network congestion as they are non-traffic-aware.

The chief problem is that very often many comparable traffic flows are misled to

converge on bottleneck links since these algorithms are oblivious to traffic

characteristics and link loading.

SDN is an emerging innovator to the traditional networking paradigm, which

unleashes a powerful new paradigm offering flow-level traffic control and

programmable interfaces to network operators. However, fully deploying the SDN in

the network is by no means an easy job. We may encounter economical, organizational

and technical challenges [1]. As a result, a full deployment of SDN, i.e., all the router

nodes support SDN and can be centrally controlled by the controllers, in the network

will not work out in the short term. Thus a hybrid SDN deployment, i.e., SDN/OSPF

hybrid network is a better choice. We adopt the hybrid architecture as the research

background in this work. In a hybrid SDN, only the SDN nodes can be controlled by

the centralized controller, while the legacy nodes still use the traditional shortest path

routing protocol OSPF to forward packets.

[2] is the first paper to address network performance issues in an incrementally

deployed SDN network. It formulates the load balancing as a linear programming

problem and refines a FPTAS algorithm to solve it. But [2] only uses a single shortest

path to optimize the traffic passing through SDN nodes and the SDN controller must

recompute the routing after forwarding one flow. The network performance is thus

limited. We propose disjoint multipath calculation in SDN nodes. For the flows directed

to the same destination, the SDN controller can map them to disjoint paths which could

ensure that the flows do not aggregate until they reach the destination node. We also

formulate the SDN controller’s optimization problem for load balancing and develop a

Lazy Routing Update (LRU) scheme for solving these problems, which belongs to Fast

Fully Polynomial Time Approximation Schemes (FPTAS). LRU can decrease the

routing calculation in the SDN controller. It does this by spreading traffic load across

all feasible links in the network. In simpler terms it means placing traffic where the

capacity exists.

2 Problem Formulation

2.1 Hybrid Network Scenario

In the SDN/OSPF hybrid network, a centralized SDN controller computes the

forwarding table for a set of SDN nodes. The first packet of every flow passing through

SDN nodes is sent to the SDN controller, and the following operations are done by the

SDN controller. The rest of the nodes in the network run traditional network protocol

OSPF and forward packets along the shortest paths. In addition to forwarding packets,

the SDN nodes forward some traffic measurement information to the SDN controller.

The controller uses these information along with information disseminated in the

network by OSPF-TE to dynamically map the routing tables to the SDN nodes in order

to change traffic conditions. Note that in OSPF-TE, the nodes also exchange available

bandwidth information on the links in the network. Therefore the controller knows the

current OSPF costs as well as the amount of traffic flow on each link (averaged over

some time period).

1

2

3

5

6 11

12

7

10

13

14
4

8
9

15

SDN Node

SDN Node

SDN Node

Controller

13

12 11 10 14

5 2 6 7 9

1 3 4 8

15

SDN Node

SDN
NodeSDN

Node

Fig.1. A hybrid network scenario Fig.2. Shortest Path Tree to Node 13

Figure 1 shows an example of hybrid network topology from [2]. Nodes 2, 9, 14 are

SDN nodes and the rest nodes are legacy nodes. SDN nodes 2, 9, 14 are controlled

externally. We will use this network to illustrate some of the concepts that we outline

in the rest of the paper. We assume that all the links in the network are bidirectional

and all links have the same OSPF cost. Each flow enters the network at its ingress node

and has to visit a set of nodes before egressing the network at its egress node. The traffic

that goes from source to destination without transiting through a SDN node will be

referred to as uncontrollable traffic. If the source of a packet is a SDN node, or if it

passes through at least one SDN node before it reaches its destination then the traffic

will be called controllable traffic. In other words, controllable traffic comprises of

packets that pass through at least one SDN node if the packets are routed using standard

OSPF. There is at least an opportunity at the SDN nodes to manipulate the path of

controllable traffic.

2.2 Optimization Problem Definition

Given a directed graph (,)G N E , where the N and E are set of n nodes and

set of m edges, respectively, with each edge capacity retrievable from a function

()c e . The background traffic ()b e on each link e is readily retrieved or estimated

by the controller through the dynamic information disseminated by OSPF-TE [6].

()g e is the edge residual capacity and () () ()g e c e b e  . There are h flows

defined as a set of ingress-egress pairs,
,{() : , , 1,..., }i i i iK s t s t N i h   and

associated to them are demands, { () : }D d k k K  . Note that we use edge to

represent network link. Let kP be the set of paths between ks to kt in G , and let

kP P . Let ()f p denotes the amount of flow along path p .

The primal linear program (LP) formulation is

max 

() (),
kp P

f p d k k K


   (1)

() (),
kp P

f p g e e E


   (2)

() 0,f p p P   (3)

(1) denotes that the sum of flows on all paths in kP is greater than the demand of

ingress-egress pairs. (2) enforces the edge capacity constraints which ensure that the

total flow on the edge is less than the difference between the edge capacity ()c e and

the background traffic ()b e . (3) ensures non-negative flow on each candidate path.

The goal is to maximize the throughput  while not violating capacity constraints. If

the optimal   then the current flow can be routed at the SDN nodes while

ensuring that all edge utilizations are less than one.

We now associate dual variables ()l e with each edge capacity constraint (2) and

()z k for the demand constraint (1). It is interesting to note that its dual LP problem

of the above can be shown to be

min () ()
e E

l e g e


() (), ,
e P

l e z k k K p P


     (1)

() () 1
k
z k d k  (2)

() 0,l e e E   (3)

() 0,z k k K   (4)

Note that this problem is a constrained version of the maximum concurrent flow

problem, we can adapt the Fully Polynomial Time Approximation Scheme (FPTAS)

developed for a generic maximum concurrent flow problem [3] to this case at SDN

controller.

3 Load Balancing In Hybrid SDN Network

3.1 Disjoint Multipath Calculation

The proposed disjoint multipath scheme determines paths as follows. First, a path

between nodes i and j is found as the shortest path by Dijkstra algorithm. The Dijkstra

algorithm is then repeated after excluding network links used in the first shortest path

to calculate the second shortest path. After that, Dijkstra algorithm is further repeated

after excluding those network links used in the first or second shortest path. This

process is repeated until no more paths are obtained. The algorithm of disjoint multipath

calculation is named Dijkstra-Repeat in the following of this paper. Obviously, the

Dijkstra-Repeat algorithm for computing the routing table for the SDN nodes could

ensure that routing will be along loop-free shortest paths while minimizing the

congestion in the network.

Forwarding is a method which maps incoming packets to outgoing links. The SDN

nodes act basically as forwarding elements. If there are multiple next hops for a given

destination, then the SDN nodes can split traffic to the destination in a pre-specified

manner across the multiple next hops, subject to load balancing.

3.2 LRU: A new FPTAS algorithm

We assume that the traffic matrix and the topology of the network are steady for a short
period. The locations and number of the SDN nodes can be fixed and determined based

on greedy algorithms [2]. The  is defined as the same value in [2], which is a function

of the desired accuracy level  , the number of nodes n and the number of edges m .

The algorithm then operates iteratively. At the beginning of each cycle, the controller

schedules controllable traffic with awareness of background traffic ()b e on each link

by OSPF-TE, so as to optimize the overall load balancing. The dual weight of each edge

e E is initialized to () / ()l e g e  , where ()g e is the remaining capacity of each

edge. In each iteration, it first computes the multiple admissible paths utP between

SDN nodes u and other nodes t with Dijkstra-Repeat. For the primal problem, the

algorithm forwards flow along the path p , while p is selected from utP with

hashing. The amount of flow ()f u sent along the path p is determined by the

minimum remaining link capacity ()g e on p and the controllable traffic demand

()d u between the two terminals of the path. As a result, the primal variable utR and

the primal flow demand ()d u is updated by ()f u , respectively. After updating the

primal variables, the algorithm continues to update the dual variables ()l e related to

path p . The algorithm stops when 1LD  .

Algorithm for Load Balancing

DL←0

l(e)←δ/g(e),eϵE Rut←0,uϵSN,tϵN

while DL<1 do

 for each demand d(u) having the same destination tϵN

 Put: admissible paths set with Dijkstra-Repeat

 while DL<1 and d(u)>0 do

 select path p from Put with hashing

 c=mineϵpg(e)

 f(u)=min{d(u),c},∀u

 Route f(u) flow from each u to t

 Rut=Rut+f(u)

 d(u)=d(u)-f(u)

l(e)=l(e)(1+ωf(u)/c(e))

Recompute DL=ƩeϵEg(e)/l(e)

end while

end for

end while

φ=min Rut/D

Output: φ

The algorithm follows in the similar vein as [3]. The correctness of the algorithm as

well as the running time analysis is identical to the results in the paper and is therefore

omitted. Actually, the computational complexity of the FPTAS algorithm is at most a

polynomial function of the network size and 1/  [3]. Thus, the computational

complexity of our approximation algorithm is also polynomial. There are however

some key differences in the implementation of the algorithm. One key difference is that

we use disjoint multipath while [3] uses a single shortest path. In fact, multipath routing

can significantly reduce congestion in hot spots by distributing traffic to unused

network resources instead of routing all the traffic on a single path. That is, multipath

routing offers better load balancing and makes full utilization of network resources [4].

The other key difference is that our FPTAS algorithm is based on Lazy Routing

Update. In each iteration, [3] has to compute the lightest admissible path from all SDN

nodes to a given destination using path finding algorithm with the dual weights ()l e

(not OSPF costs). The most time consuming step in practical cases is the shortest path

computation. In [3], the SDN controller recomputes the shortest path after routing one

flow, resulting in frequent updates on routers, which is a so time consuming process in

each iteration of FPTAS algorithm that it doesn't fit in such an online routing algorithm.

So in our scenario, at the beginning of each cycle, the controller calculates admissible

paths set using Dijkstra-Repeat algorithm with the traffic information from OSPF-TE.

And in a short period, the SDN controller maps the flows aggregated at SDN nodes to

multiple admissible paths with hashing. This process of augmenting flow is repeated

until the problem is dual feasible. We call that Lazy Routing Update (LRU), as shown

in Algorithm for Load Balancing.

4 Experiments And Evaluation

In this section, we conduct the simulation experiments. We ran two groups of

experiments to check the effectiveness of the algorithm using the following two

topologies: (i) The Geant (Europe) topology from [5]. This topology has 22 nodes and

36 links; (ii) The Abilene topology from [5]. This topology has 12 nodes and 30 links.

For Geant and Abilene topology, the link weights and the link capacities are given, and

we can also get the traffic matrices of the two topologies from [5]. The number of SDN

nodes for the two topologies are determined as 6 and 3, respectively. The location of

the SDN nodes are decided by the incremental greedy approach stated in [2].

For Geant and Abilene topology, we carry out twenty experiments with twenty

traffic matrices from [5] on each topology to compare with the maximum link

utilization in OSPF, HSTE[11] and our LRU. We carry out the two groups of

experiments to illustrate the practicality of our algorithm, as the two topologies used in

the experiments are real and the traffic is actually measured. The results are shown in

Figure 4 and Figure 5. As the figures illustrate, our algorithm LRU in the figures obtains

a lower maximum link utilization compared with the other two algorithms. Compared

with HSTE, LRU can reduce the overall maximum link utilization by 10% and 9% for

Geant and Abilene topologies, respectively. Compared with OSPF, the reductions are

20% and 17%.

Fig.4. Comparison of Maximum Link Utilization of Geant

Fig.5. Comparison of Maximum Link Utilization of Abilene

5 Conclusion

The SDN/OSPF hybrid network load balancing is a popular problem that raises

people’s attention worldwide. It deviates from the traditional load balancing scenario,

where the flows are always routed along the shortest paths. The emerging of SDN

provides a new method to solve the load balancing problem. It can centrally control the

flows that directed to the outgoing links of the SDN nodes, which is similar with the

model of multi-commodity. In this paper, we propose a new FPTAS algorithm LRU to

solve the load balancing problems in SDN/OSPF hybrid network. Compared with other

load balancing algorithms, the proposed algorithm reduces the SDN calculation and

obtains a lower maximum link utilization. In the future work, we will carry out the

experiments on the testbed and consider more hybrid SDN network types.

Acknowledgments. This research is sponsored by the State Key Program of National

Natural Science Foundation of China No. 61533011, Shandong Provincial Natural

Science Foundation under Grant No. ZR2015FM001, the Fundamental Research Funds

of Shandong University No.2015JC030.

References

1. S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and research challenges of

hybrid software defined networks,” ACM SIGCOMM Computer Communication Review,

vol. 44, no. 2, pp. 70–75, 2014.

2. S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in software defined

networks,” in Proc. IEEE INFOCOM, 2013, pp. 2211–2219.

3. N. Garg, and J. Konemann, “Faster and simpler algorithms for multicommodity flow and other

fractional packing problems,” SIAM Journal on Computing, 37(2):630-652, 2007.

4. M. Dasgupta, G. Biswas, “Design of multi-path data routing algorithm based on network

reliability”, Computers & Electrical Engineering 2012, 38(6):1433–43.

5. SDNlib. http://sndlib.zib.de/home.action

6. M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. Corrêa, S. C. de Lucena, and M.

F. Magalhaes, “Virtual routers as a service: the routeflow approach leveraging software-

defined networks,” in Proceedings of the 6th International Conference on Future Internet

Technologies. ACM, 2011, pp. 34–37.

http://sndlib.zib.de/home.action

