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Abstract. Dynamical modeling is used to describe the process of ani-
mals’ repeated learning. Theoretical analysis is done to explore the dy-
namic property of this process, such as the limit sets and their stability.
The scope of variables is provided for different practical purpose, coop-
erated with necessary numerical simulation.
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1 Introduction

Learning is always a hot issue in pedagogy and psychology research. J. Dewey
considered learning as the process of individual activities, from the perspective
of Pragmatism [1]. He proposed ”learning by doing”, and emphasized the effect
of specific situation on the individual learning behavior. However, from the per-
spective of Constructivism, J. Piaget considered learning as a kind of interaction
process between individual and the environment surrounding him, which makes
his cognitive structure develop constantly and gradually [2].

We can see different learning behaviors everywhere. One common adopted
way is repeated learning, such like reciting foreign language words repeatedly
to remember them, and doing exercises frequently to learn driving. [3]. This
process can make some adaptable changes on the mental level. And one of the
most important changes is, learners can abstract an ”schema” from the operating
process of the skill, and this is so called ”transfer of learning” [4].

In modern psychology, learning is such a kind of behavior which is not only
owned by human beings, but also by animals. Lots of researchers studied animals’
learning behavior. In experiments, E. Thorndike observed the escaping behavior
of a cat which was trapped in a box. He argued that the cat keep running
aimlessly at first but gradually drop the ways that cannot open the box and
finally acquire the right way to escape [5]. B. Skinner observed the bar-pressing
behavior of a mouse in the box, which can serve itself food, and argued that the
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animals reacted to the reinforcement in particular ways. And this ”reinforcement
- reaction” connection is learned by the animals themselves [6].

There are a lot of studies of learning behavior of animals, although the learn-
ing contents maybe different, but the way of learning is always repeated learning,
for it is widely believed that animals’ learning ability is poor. Furthermore, lots
of studies seem to tell us that based on this level of learning ability, the an-
imals can perform the transfer of learning like human being. For example, in
the Pavlovian classical experiments, the dog acquired the conditioned reflex of
”bell ringing -salivating” [7]. So, if we make an animal learn a kind of behavior
repeatedly, it indeed can influence the generation of other related behaviors. But
if this influence exists, how it works? And how strong it can be? Both of these
questions are important because they can help us know the nature of learning
deeper. The present study will answer these questions, and try to provide a
mathematical model of relationship between these two behaviors.

Mathematical modeling is in psychology and society has rapid development
these years [8]. Social mechanisms are analyzed by analytical and numerical ap-
proaches. For example, He et al. found a cellular automata model to describe
the learning process [9]. Dynamic analysis is used for modeling the problems
that have definite dynamic relation or feedback relationship. It has been widely
used to solve ecology and demography problems. There are obviously two sub-
processes in this repeated learning problem, i.e., the learning are forgetting
states. It belongs to the piecewise-smooth problems [10].

The remainder of this paper is as follows. Section 2 is the mathematical
modeling process, and three types of switching rules are enumerated in Section
3. More precise dynamic analysis including some numerical simulation is done
in Section 4. Section 5 is the conclusion.

2 Modeling Framework

We establish a dynamic model in this section first. As mentioned above, for
artificial animals’ repeated learning process, there are obviously two discrete
states, the training condition and forgetting condition, noted as Q = 1 and
Q = −1 separately. Note x as the main memory ability, and y as the relevance
memory ability, 0 ≤ x, y ≤ 1.

In the training condition, following the logistic model, the dynamic function
of the main memory can be described as

ẋ = α1x(1− x). (1)

While in the forgetting condition, by Ebbinghaus forgetting curve, the dy-
namic function of main memory ability can be described as

ẋ = −β1x. (2)

The variation of the relevance memory ability is related with the main mem-
ory ability. In the training condition, it can be described as

ẏ = α2(x− l1)y(1− y), (3)



Modeling and dynamic analysis on animals’ repeated learning process 3

where α2 > 0. There is one extra term (x − l1) describing the influence of the
main memory ability to the related memory ability. More concretely, there is a
separation x = l1, 0 < l1 < 1, such that the relevance memory ability increases
when the main memory ability x > l1 and reduces when x < l1. Similarly, the
equation is

ẏ = −β2(l2 − x)y(1− y) (4)

in the forgetting condition, where 0 < l1 < l2 < 1, β2 > 0.
The explicit solution of the simultaneous equations (1)-(4) is

{
x(t) = 1− 1

1+eα1t+c1

y(t) = 1− 1

1+(1+eα1t+c1 )
α2
α1 e−α2l1t+c2

when Q = 1;

{
x(t) = c3e

−β1t

y(t) = 1− 1

1+e
−β2l2t−c3

β2
β1

e−β1t+c4

when Q = −1, (5)

where ci, i = 1, 2, 3, 4 are arbitrary constants.
In order to get a complete deterministic system, a switching rule between the

training and forgetting conditions is needed. Actually, there are four following
types, as listed in the following section.

3 Dynamic analysis under different switching rules

3.1 Quantitative control switching rule

The quantitative control switching rule contains two preestablished bounds w1

and w2. During the training condition(Q = 1), the system switches to the forget-
ting condition(Q = −1) when x reaches w2. Vice versa. So it makes a periodic
learning cycle consist of one training condition and one forgetting condition, See
equation (6).

Q(t+) =
{−Q(t) if Q(t) = −1 and x(t) ≤ w1, or Q(t) = 1 and x(t) ≥ w2

Q(t) else ,

(6)
Composed the above switching rule and equation (1)-(4), a deterministic

piecewise-smooth system is obtained. Usually, the analysis of piecewise-smooth
systems is quite complicated, while our model is a providential one for it has
an explicit solution. Assume the point (w1, y) changes to (w1, f(y)) in a whole
training-forgetting period. By computation ,we get f(y) = Ay

(A−1)y+1 , where

A = [(w1
w2

)l2ew2−w1 ]β [(w1
w2

)l1( 1−w1
1−w2

)1−l1 ]α > 0, and α = α2
α1

, β = β2
β1

. So f ′(y) =
A

[(A−1)y+1]2 .
Consider the equilibrium point of map f , i.e. the point y satisfies f(y) = y.

The equilibrium point of f indicates the period solution of the whole system,
meaning that the collateral memory ability changes periodically with the main
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memory ability. Solving the equation f(y) = y, we get A = 1 or y = 0, 1. For
y = 0 and y = 1 are two trivial solutions, we focus on the case A = 1, then

α(1−l1) ln(1−w1)+(αl1+βl2) lnw1−βw1 = α(1−l1)ln(1−w2)+(αl1+βl2) lnw2−βw2

Note g(w) = α(1− l1) ln(1−w)+ (αl1 +βl2) lnw−βw, then g(0) = g(1) = −∞.

The solution of g′(w) = 0 is w0 = l2−
√

(α+β−βl2)2+4αβ(l2−l1)−(α+β−βl2)

2β . A group
of parameters αi, βi, li, i = 1, 2 guaranteeing A = 1 may exist for w1, w2 satisfied
0 < w1 < w0 < w2 < 1 can be easily chosen. That means f(y) ≡ y, ∀0 < y < 1,
i.e., the collateral memory ability can keep a stable circle at any ability.

Otherwise if A > 1, then f ′(0) = A > 1, so y = 0 is an unstable equilibrium
point, while f ′(1) = 1/A < 1, so y = 1 is a stable equilibrium point. That is to
say, under this quantitative control switching rule, orbits start from every initial
point except x = 0 will converge to y = 1 after sufficient times of training-
forgetting cycling, i.e. the collateral memory ability will converge to the upper
bound. Oppositely, if A < 1, y = 0 is a stable equilibrium point while y = 1 is
an unstable equilibrium point. So the collateral memory vanishes no matter how
the initial ability was.

3.2 Timing control switching rule

Another common switching rule is based on timing control. In this case, each
time length of training and forgetting condition is fixed, noted as τ1 and τ2

separately. In most cases τ2 > τ1 > 0.
The Poincaré map of the system can also be computed explicitly in this case.

The system starts from (x0, y0) and changes to

x(τ1+τ2) =
e−β1τ2

1 + ( 1
x0
− 1)e−α1τ1

= x0· 1
eβ1τ2 [x0(1− e−α1τ1)− (e−β1τ2 − e−α1τ1)] + 1

and y(τ1 + τ2) = M
M+N( 1

y0
−1)

, where M = e−β2l2τ2− β2
β1

x1e−β1τ2
,

N = (x0)
α2
α1 e

β2
β1

x1

(1+( 1
x0
−1)e−α1τ1 )

α2
α1 eα2(1−l1)τ1

, after a period.

So the equilibrium point is x = 0 or x = e−β1τ2−e−α1τ1

1−e−α1τ1 . For the model
located in x ≥ 0, there is only one equilibrium point x = 0 and it is stable, when
α1τ1 ≤ β1τ2. There are one unstable equilibrium point x = 0 and one stable
equilibrium point x(0) = e−β1τ2−e−α1τ1

1−e−α1τ1 .
In this case, y(0) = y(τ1 + τ2),∀y(0) if and only if M − N = 0. Otherwise

the system has two equilibrium points y = 0 and y = 1. If M > N , 0 is unstable
and 1 is stable, while if M < N , 0 is stable and 1 is unstable.

3.3 Semi-timing control switching rule

Composing the above two rules, the semi-timing control switching rule is also
widely used in actual. This rule fixed simultaneously the upper bound (or lower
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bound) and the forgetting time length (or the training time length). The corre-
sponding Poincare map is:

(1)The system starts from (w1, y0), goes through a τ1 time training con-
dition and reaches (x1, y1), then goes back to (w1, y2) through a forgetting
condition. By computation, we get y2 = M

M+N( 1
y0
−1)

, where M = (w1 + (1 −

w1)e−α1τ1)(
β2l2
β1

+
α2
α1

)eα2(1−l1)τ1 , N = e
− β2

β1
1

w1+(1−w1)e−α1τ1 .
(2)The system starts from (w2, y0), goes through a τ2 time forgetting condi-

tion and reaches (x1, y1), then goes back to (w2, y2) through a training condition.
Here y2 = M

M+N( 1
y0
−1)

, where

M = (1+( eβ1τ2

w2
−1)e−α1τ1)

α2
α1 ( 1−w2

eβ1τ2−w2
)−

α2
α1

(1−l1), N = x
−α2

α1
0 eβ2l2τ2+

β1
β2

w2(e
−β1τ2−1).

In both two subcases, the dynamic property of y is similar with the one in
the timing control switching rule.

4 The ultimate stable states and bifurcation analysis

Fig. 1. The ultimate stable states under the perturbation of measurement error

Although infinite multiple stationary states are existence in some cases of
the above analysis, most of them are unstable in fact, for the observation is
discrete. More specifically, throughout the above analysis, we assume that the
system switches instantaneously whenever the main memorial ability reaches the
preestablished value in Section 3.1 and 3.3. Actually, this instant transformation
cannot be realized for the estimation of memorial ability must be discrete, fur-
thermore, it costs time.

To describe the influence of the discrete observation, the switching rule can
be rewritten as: (take the quantitative control switching rule in Section 3.1 for
instance)

Q(t+) =
{

Q(t) if tn ≤ t < tn+1

−Q(t) else , (7)
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where ti, i = 0, 1, ... is a group of switching time series. Usually they are de-
termined mainly depending on a presupposed admissible error ε > 0. And the
system switches when the observed variable enters a presupposed neighborhood
of the border line. That is to say, if ∆t is the observed interval time length,

ti = ki∆t, s.t.|xi(k∆t)− w1| < ε, or |xi(k∆t)− w2| < ε, ki ∈ N.

Under this switching rule, the ultimate stable stationary states can be drawn
by numerical simulation, as in Figure 1. Unlike the results given in Section 3.1,
there are only finite stable stationary states, means only these states can exist
under the discrete observation.

5 Conclusion

Mathematical model is established to discuss the relationship between the main
memory ability and the relevance memory ability. Different switching rules are
introduced and under each rule, equilibria and their stability are discussed. Al-
though with some particular parameters, every orbit can be a periodic invariable
one, but there can only be finite periodic orbits, due to the discrete observation,
as explained concretely in Section 4. The results of dynamic analysis can be used
for animal training. Further observational study can be done to demonstrate the
models.
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