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Abstract. In this paper, it applys Gaussian loss function instead of ε -insensitive loss function in a 

standard SVRM to devise a new model and a new type of support vector classification machine 

whose optimization problem is easier to solve and has conducted effective test on open data set in 

order to apply the new algorithm to environment monitoring in greenhouse plants and the 

monitoring result is better than any other method available. 
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1. Introduction 

It can be conclude that, the classification problem is a special type of the regression problem from 

the mathematics language description [1]. Therefore, it is feasible to create classification algorithm by 

Suport Vector Machine (SVM). A general Support Vector Regression Machine usesε -insensitive loss 

function to create classification algorithm. However, the solution of the problem is very difficult to get 

in this method. As a result, by substituting Gaussian loss function for the ε -insensitive loss function, 

the dual problem is derived. After some simplification and transformation of equations, the resultant 

optimization problem is easy to solve. At last, this new method is applied to Iris open data set, in order 

to do the data collection and algorithm varification. In a word, the new algorithm can be applied to 

modern agriculture and solve practical problems, and it is proved to be achievable and effective. 

2. SVR model of solving classification problems 

A classification problem is that the trainingset is given as, 

1 1{( , ), , ( , )} ( )l

l lT x y x y    (1) 

here , ={1, 1}, 1, ,n

i ix R y i l     , then it could figure out one real-valued function ( )g x in order 

to deduce the corresponding value y  under  any mode x  by using decision function 

( ) sgn( ( ))f x g x  (2) 



By comparing the definition with that of classification problems, the latter can be considered as a 

kind of special regression problem, thus it is able to solve such problems by applying Support Vector 

Regression Machine. 

2.1. The Original Optimization Problem and the Dual Problem 

Now, try to consider the classification problem as regression problem since iy  takes value 

from{1, 1} , and instead of ε -insensitive loss function, Gaussian loss function is selected, the form of 

original optimization problem is  
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Problem (3)-(6) equal to 
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Apparently constraints in the problem can be formulated as equalities, then problem (7) and (8) 

equal to 
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Let  
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then the above problems can be expressed as 
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The resulting problem is exactly the original optimization problem in the Least Squares Support 

Vector Machine.  

Next, discuss properties of the resulting problem and its dual problem, and then create an algorithm 

based on them. 

Theorem 2.1.1 The Dual problem of problem (11)-(12) is 
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Proof  Introducing the Lagrange function of problems (11)-(12) 
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where lR   is the Lagrange multiplier vector, find the minimum of Lagrange function with respect 

to , ,w b  , get the following KKT condition:  
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Substitute the above conditions into the Lagrange function and find the maximum of  , the dual 

problem (13) and (14) are obtained.  

The several theorems below are about relations between solution of original problem (11)-(12) and 

that of dual problem (13)-(14) are all established: 

Theorem 2.1.2 The solution ( , , )w b   
 of original problem (11)-(12) exists and the solution is 

unique. 

Theorem 2.1.3 Suppose ( , , )w b     is the solution of original problem(11)-(12), then  dual 

problem(13)-(14) must have solution 1( , , )T

l      to satisfy 
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Proof Concluded from Theorem 2.1.1 and Wolfe Theorem, if ( , , )w b     is the solution of original 

problem (11)-(12), and the dual problem(13)-(14) must have solution which satisfies equation (21).  

Theorem 2.1.4     Suppose 1( , , )T

l      is  an arbitrarily solution of dual problems(13)-(14), 

then the solution to ( , )w b  of original problem (11)-(12) exists and must be unique,  
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Its proof can be seen in [2] 

2.2 The SVR Algorithm of Solving Classification Problems 

For general nonlinear problems, put the input space nR into a single mapping ( )  , which can 

transform it to a high-dimensional Hilbert space. In this space, the original optimization problem is 

constructed and its dual problem is obtained. 

                    min

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Instead of the dual problem of the inner product ( ( ) ( ))i jx x  , the kernel function ( , )i jK x x  is 

introduced, then the dual problem becomes, 
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For ( , )i jK x x ij

C


  in the objective function, it can be represented by a kernel function 
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In Hilbert space, Theorem 2.1.2-2.1.4 are still hold for the relationship between the solution of dual 

problem and that of the original problem, then the formula of the solution to *b  becomes 
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According to theorem 2.1.4, the following algorithm is established: 

Algorithm2.2.1 The SVR Algorithm for Solving Classification Problems 

(i)Assume a known trainingset 
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(ii) Choose a suitable positive C  and a kernel ( , )K x x ; 

(iii) Construct the problem and find the solution of  
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The optimum solution is obtained 
* * *
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(iv)To create decisive function 

* *

1

( ) sgn( ( , ) )
l

i i i

i

f x a y K x x b


   
(32) 

Here *b  is given by equation (29). 

2.3 The Numerical Experiments 

In order to verify the proposed Algorithm2.2.1, a test was conducted on Iris data set [3]. The Iris 

data set is used to test the performance of classification algorithms. The data set contains the number of 

150 sample points, which are divided into three categories, namely, I(Iris-setosa), II(Iris-versicolor) 

and III(Iris-virginica), there are 50 sample points in each type and each sample point has for properties.  

There are three two-class classification problems, namely, Class I and II is the positive class, and 

Class III is the negative class; or Class I and III is the positive class, and Class II is the negative class; 

or Class II and III is the positive class, and Class I is the negative class. In each of the two-class 

classification problems there are 150 sample points, which has been randomly assigned to training set 

and testing set. The training set contains 50 positive points and 25 negative points, while the testing set 

contains 50 positive points and 25 negative points. The trainings are conducted by using Algorithm 

2.2.1 and standard C-SVM. During the training process, the RBF Kernel function is adopted for the 

two algorithms. The parameter C  is set to be 0.1, l, 10, 100, 1000, 10000 and so on. The decisive 

functions gained in each training session are tested, and each testing results are recorded. Finally 

compute and compare the average testing accuracy, result is shown in the following table: 

Table 1. Result Comparison Table 

Classification C SVC  Algorithm 2.2.1 

{I，II}—III 95.6% 96.1% 

{II，III}—I 100% 100% 

{I，III}—II 97.5% 97.2% 

From the above comparison results, obviously Algorithm 2.2.1 and C SVC  share the similar testing 

accuracy rate. 

3 The Application of SVR Classification Algorithm to the Environment Monitoring 

on the Greenhouse Plant Growth 

The great progress in technology has brought a serious problem to the traditional agriculture, which 

is far from meeting the needs of the modern social development [4]. Therefore, improvement and 

revolution must be done to the traditional agriculture. A new cultivation method is developed through 

many years’ experience, which is that people can control environmental factors so that the crops can 

grow in the most suitable environment. In addition, the growing seasons may be extended and the best 

output is gained. This agricultural mode is known as the greenhouse agriculture, or as factorial 

agriculture and greenhouse agriculture in developed countries. With its striking feature of being free 

from environmental constraint, the new agricultural mode enables the crops to grow under some 

pre-designed conditions is highly yielding and greatly effective. Hence it has been a trend all over the 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%b7%a5%e5%8e%82%e5%8c%96%e5%86%9c%e4%b8%9a&tjType=sentence&style=&t=factorial+agriculture
http://dict.cnki.net/dict_result.aspx?searchword=%e5%b7%a5%e5%8e%82%e5%8c%96%e5%86%9c%e4%b8%9a&tjType=sentence&style=&t=factorial+agriculture


world. In a word, the research on environment monitoring is crucial, especially for the real-time 

environment monitoring.  

3.1 Objective Conditions and Advantages of SVM-based Environment Monitoring of Greenhouse 

Plants 

The environmental factors for soilless greenhouse cultivation include temperature, humidity, CO2, 

illumination, EC, and nutrition elements. After discussing with agricultural experts, choosing l  

greenhouses to be measured with n factors as the measurement parameter. The i-th parameter is marked 

as   , 1,2, ,
i

x i n , then    
1

( , , )T

n
x x x  here, n

ix R , and normal greenhouse is recorded as 1,  

otherwise -1, then let  

    1 1, , , ,l lT x y x y
, 

Here   , 1,2, ,n

i
x R i n 

, 1, 1iy or   

It is just a trainingset of Support Vector Classification Machine. Thus the problem of environmental 

monitoring could be solved by SVM. (see 3.2). 

Nowadays, the normal data ranges for the environment monitoring of greenhouse plants are given. 

In practice, adjusting those parameters based on the standard. However, it is found that although all the 

data are in range, the problem is still come out sometimes. It indicates that the interval control method 

has a large deviation and it is not reliable. For example, as temperature is adjusted, it may interfere with 

the humidity, so the environment control is not effective and sometimes make it worse. The advantage 

of SVM is that it do not have to set up the ranges for each parameter beforehand; instead, taking into 

account of all the parameters together, resulting in the much improved accuracy of monitoring. Assume 

the output is -1, which means the current environment is not the one wanted, so adjusting the 

corresponding parameters in the computer until the result is 1. This operation is obviously easy and 

effective with the aid of computer. 

3.2 The Application to Environment Monitoring of Celery Cultivation 

Three years’ research on celery is conducted in Shouguang, Shandong and Fengnan, Hebei. 100 

greenhouses are randomly taken as our sample and measured 15 parameters, which are suggested by 

agricultural experts. The parameters include temperature, humidity, illumination, and so on. A data set 

of 100 15-dimension vectors is obtained, at the same time, let agricultural experts determine whether 

the celery greenhouse is normal or not [5]. The 100 15-dimention vectors are given values of -1 and 1 

according to the result is abnormal or not. In this way, the trainingset of the SVM is obtained.  

3.2.1 Data Pre-retreatment 

From the data, it is noticed that some parameters are in a narrow range, for example, the nitrogen 

concentration is between 0.004 and 0.01, but some parameters are in a wide range, like illumination is 

between 200 and 1200 luxes. Thus, standardization of those parameters is needed. The 

maximum-minimum standardized method is used. For example, nitrogen  ix  is between 0.004 and 

0.01, so here uses maximum-minimum formula,  
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(33) 

Standardize the data set to D . 

The data set is randomly splited into 2 subsets by the ratio of 7:3. One subset is trainingset T  and 

the number of training point is l (here 70l ), the other subset is test set S , the test point is m (here, 

30m ). The number of the positive points in training set T  is 
T , that for the negative points is 

T . 

Similarly, the number of the positive points in test set S  is 
S , the number of negative points is 

S . 

The number of positive points is 74, and the number of negative points is 26. There is an imbalance 

between these two kinds of points. Therefore, set up penalty parameters C  and C  for both positive 

and negative points when using SVM. C  and 
C  could be determined by the following formula, 

,/ lCTC    ,/ lCTC    (34) 

Here 0C , which has been given in advance. 

3.2.2 The Choice of Model 

Suitable models of SVM are needed to be chosen for the above classificatory problem. Three models 

were choose, the first one is weighed proximal SVM model [6], and the original problem is  
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and its dual problem is 
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(37) 

The second model is support vector machine algorithm 2.2.1, the optimization problem to be solved 

is (30) - (31). 

The third one is weighed standard SVM model [7]. The original problem is  
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and its dual problem is  
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Proper parameters are going to be chosen after defining the three above models. The parameters 

include kernel function ),( xxK   and ,C C  , and the parameters in kernel function as well. Here, the 

radial basis kernel function is choosen, 
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Now the parameters to be determined are ,C C   and  . 

For each model, the best parameters is choosen by the method of lattice. In other words, the ranges 

of C
 and C

, are  10000,1000,100,10,1,1.0  and the ranges of  , which is  5,2,1,5.0,2.0,1.0 . Thereby, 

they have constituted a group of parameters,  , ,C C   . Loo deviations were calculated for each group 

of parameters [8]. The group with minimal Loo value is the group of best parameters , ,C C   . For 

weighed proximal SVM model and it is  2,10  C ; for Algorithm 2.2.1 its group of best parameters 

is  100 100, 5C C    ， ; for weighed standard SVM, it is  1,10  C . 

3.2.3 Comparison of Results 

Substituting three groups of best parameters into the corresponding models, decisive functions are 

obtained, which can be used to decide the points in test set, as shown in the following table. 

Table 2. Result Comparison Table 

Checkup     Models 

Results C-SVM 
Algorithm 

2.2.1 
PSVC 

Result Precision 90% 95% 86% 

Percentage of False 

Report 
3% 0% 12.5% 

Percentage of 

Checkup Result 
66.7% 83.3% 66.7% 

The Result Precision is the ratio of items of those checked correctly to all the items in the sample 

test set; the percentage of False Report is the ratio of false reported items to the number of real usual 

items; Percentage of Checkup Result is the percentage of the found real false items in all the real items.  

From the above experiment results, Algorithm 2.2.1 leads to the best result precision among three 

kinds of models. 

4. Conclusion 

Based on the above discussion, the classification problem is treated as a special regression problem, 

and the ε -insensitive loss function is substitued to Guassian loss function, so that the optimization 

problem is easy to solve. This classification algorithm introduces a new way of solving classification 

problem, and the new algorithm has been applied to practical greenhouse plant environment 

monitoring. It not only solves the practical problem, but the effectiveness is varified and comparison 

with old method shows the advantages of the new method.  

Checkup Items 
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