
HAL Id: hal-01515252
https://inria.hal.science/hal-01515252

Submitted on 27 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Lintent: Towards Security Type-Checking of Android
Applications

Michele Bugliesi, Stefano Calzavara, Alvise Spanò

To cite this version:
Michele Bugliesi, Stefano Calzavara, Alvise Spanò. Lintent: Towards Security Type-Checking of
Android Applications. 15th International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOOODS) / 33th International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE), Jun 2013, Florence, Italy. pp.289-304, �10.1007/978-3-642-38592-
6_20�. �hal-01515252�

https://inria.hal.science/hal-01515252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Lintent: towards security type-checking of
Android applications

Michele Bugliesi, Stefano Calzavara, and Alvise Spanò

Università Ca’ Foscari Venezia

Abstract. The widespread adoption of Android devices has attracted
the attention of a growing computer security audience. Fundamental
weaknesses and subtle design flaws of the Android architecture have been
identified, studied and fixed, mostly through techniques from data-flow
analysis, runtime protection mechanisms, or changes to the operating
system. This paper complements this research by developing a framework
for the analysis of Android applications based on typing techniques. We
introduce a formal calculus for reasoning on the Android inter-component
communication API and a type-and-effect system to statically prevent
privilege escalation attacks on well-typed components. Drawing on our
abstract framework, we develop a prototype implementation of Lintent,
a security type-checker for Android applications integrated with the An-
droid Development Tools suite. We finally discuss preliminary experien-
ces with our tool, which highlight real attacks on existing applications.

1 Introduction

Mobile phones have quickly evolved from simple devices intended for phone
calls and text messaging, to powerful handheld PDAs, hosting sophisticated
applications that manage personal data and interact on-line to share information
and access (security-sensitive) services. This evolution has attracted the interest
of a growing community of researchers on mobile phone security, and on Android
security in particular.

Fundamental weaknesses and subtle design flaws of the Android architec-
ture have been identified, studied and fixed. Originated with the seminal work
in [9], a series of papers have developed techniques to ensure various system-
level information-flow properties, by means of data-flow analysis [13], runtime
detection mechanisms [7] and changes to the operating system [12]. Other papers
have applied similar techniques to the study of the intent-based communication
model of Android and its interaction with the underlying permission system [5,2].
Somewhat surprisingly, typing techniques have instead received very limited at-
tention, with few notable exceptions to date ([3], and more recently [1]). As a
result, the potential extent and scope of type-based analysis has been so far left
largely unexplored. In the present paper we make a step towards filling this gap.

Contributions. Our analysis of the Android platform is targeted at the static de-
tection of privilege escalation attacks, a vulnerability which exposes the frame-
work to the risk of unauthorized permission usage by malicious applications. To

carry out our study, we introduce π-Perms, a simple formal calculus for reason-
ing about inter-component interaction in Android (Section 3). Albeit small and
abstract, π-Perms captures the most relevant aspects of the Android message
passing architecture and its relationships with the underlying permission system.
Our formalization pays off, as it allows us to unveil subtle attack surfaces to the
current Android implementation that had not been evaluated before.

We tackle the problem of programmatically preventing privilege escalation
attacks inside π-Perms, by spelling out a formal definition of safety (Section 4)
and proposing a sound security type system which statically enforces such no-
tion, despite the best efforts of an opponent (Section 5). Providing the desired
protection turns out to be challenging, since the inadvertent disclosure of sensi-
tive data may enable some typically overlooked privilege escalation scenarios.

Based on our formal framework, we then develop a prototype implementation
of Lintent, a type-based analyzer integrated with the Android Development
Tools suite (Section 6). Lintent integrates our typing technique for privilege
escalation detection within a full-fledged static analysis framework aimed at
supporting a robust and more reliable development process. Lintent is the first
type-based analyzer for Android applications and its implementation highlights
a number of engineering challenges which should likely be tackled by any other
type-based verification tool for Android. We discuss preliminary experiences with
our tool, which highlight real attacks on existing applications (Section 7).

Enhancing the Android development process is increasingly being recognized
as an urgent need [4,10,8,16,6]: Lintent represents a first step in that direction1.

2 Android Overview

Intents. Once installed on a device, Android applications run isolated from each
other in their own security sandbox. Data and functionality sharing among dif-
ferent applications is implemented through a message-passing paradigm built
on top of intents, i.e., asynchronous messages providing an abstract description
of an operation to be performed. Intents may be either explicit or implicit : the
former specify their intended receiver by name and are always securely delivered
to it; the latter, instead, do not mention any specific receiver and just require
delivery to any application that supports a given operation (an action).

Components. Intents are delivered to application components, the essential build-
ing blocks of Android applications. There are four different types of components.
An activity represents a screen with a user interface: activities are started with
an intent and possibly return a result upon termination. A service runs in the
background to perform long-running computations: services can either be started
with an intent, or expose a remote method invocation interface to a client by re-
turning it a binder object. A broadcast receiver waits for intents sent to multiple
applications. A content provider manages a shared set of persistent application

1 Technical report and Lintent at https://github.com/alvisespano/lintent

data. Content providers are not accessed through intents, but through a CRUD
(Create-Read-Update-Delete) interface reminiscent of SQL.

Protection mechanisms. The Android security model implements isolation and
privilege separation on top of a simple permission system. Android permissions
are identified by strings and can be defined by either the operating system or the
applications. Permissions are assigned at installation time and are shared by all
the components of the same application; if any of the requested permissions is not
granted by the user, the application is not installed. The Android communication
API offers various protection mechanisms to the different component types. In
particular, all components may declare permissions which must be owned by
other components requesting access to them; on the other hand, only broadcast
requests may specify a permission which a receiver must hold to get the message.
A limited form of permission delegation is implemented in Android by special
objects known as pending intents: we will return to this point later on.

3 π-Perms: a calculus for Android applications

We describe π-Perms, a simple formal calculus which captures the essence of
inter-component communication in Android. We detail the connections between
π-Perms and the Android platform in Section 3.2.

3.1 Syntax and semantics

We presuppose disjoint collections of names m,n and variables x, y, z, and use
the meta-variables u, v to range over values, i.e., both names and variables. We
denote permissions with typewriter capital letters, as in PERMS, and assume they
form a complete lattice with partial order v, top and bottom elements > and ⊥
respectively, and join and meet operators t and u respectively.

An expression represents a sequential program, which runs with a given set
of assigned permissions and may return a value. As part of its computation, an
expression may perform function calls from a pool of function definitions. The
syntax of expressions is defined in Table 1.

E ::= expressions D ::= definitions
D \E evaluation u(x / CALL).E function def.
u〈v . RECV〉 invocation D ∧D conjunction
let x = E in E′ let expr.
(νn)E restriction
[PERMS]E perm. assign.
v value

Table 1. Syntax of π-Perms expressions

The expression D \E runs E in the pool of function definitions D. An in-
vocation u〈v . RECV〉 tries to call function u, supplying v as an argument; the
invocation succeeds only if the callee has at least permissions RECV. A let ex-
pression let x = E in E′ evaluates E to a name n and then behaves as E′ with
x substituted by n. A restriction (νn)E creates a fresh name n and then be-
haves as E. The expression [PERMS]E represents E running with permissions
PERMS. A definition u(x / CALL).E introduces a function u; only callers with at
least permissions CALL can invoke this function, supplying an argument for x.
Multiple function definitions can be combined into a pool with the ∧ operator.
Function definitions, “let” and ν are binding operators for variables and names,
respectively: the notions of free names fn and free variables fv arise as expected.

The formal semantics of π-Perms is given by the small-step reduction relation
E → E′ defined in Table 2.

(R-Call)
CALL v PERMS RECV v PERMS

′

n(x / CALL).[PERMS′]E \ [PERMS]n〈m . RECV〉 → [PERMS′]E{m/x}

(R-Return)
let x = [PERMS]n in E → E{n/x}

(R-Context)
E → E′

C[E]→ C[E′]

(R-Struct)
E WE1 → E2

WE′

E → E′

Reduction contexts: C[·] ::= · | let x = C[·] in E | (νn) C[·] | D \ C[·]

Table 2. Reduction semantics for π-Perms

Rule (R-Call) implements the security “cross-check” between caller and
callee, which we discussed earlier: if either the caller is not assigned permis-
sions CALL, or the callee is not granted permissions RECV, then the invocation
fails. Whenever the invocation is successful, the expression runs with the per-
missions of the callee. The other rules are essentially standard, we just note
that (R-Struct) closes reduction under heating, an asymmetric variant of the
standard structural congruence relation. The heating relation E W

E′ allows to
syntactically rearrange E into E′, for instance by exchanging the order of the
function definitions and by extruding the scope of bound names (see the online
technical report for a complete definition of the heating relation).

3.2 π-Perms vs Android

Intents. π-Perms can encode both implicit and explicit intents. Communication
in π-Perms is non-deterministic, in that a function invocation n〈m . RECV〉 can
trigger any function definition n(x / CALL).E in the same scope, provided that
the permission checks are satisfied. Technically, this non-determinism is achieved

through the heating relation, which allows to liberally rearrange the pool of
function definitions. Hence, communication in π-Perms naturally accounts for
implicit intents, which represent the most interesting aspect of Android commu-
nication. Explicit intents can be recovered by univocally assigning each function
definition with a distinct, unique permission: explicit communication is then
encoded by requiring the callee to possess (at least) such permission.

Components. All of Android’s intent-based component types are represented in
π-Perms by means of function definitions. Activities in Android may be started
by invoking the methods startActivity or startActivityForResult; in our
calculus we treat the two cases uniformly, by having functions always return a re-
sult. Services may either be started by startService or become the end-point of
a long-running connection with a client through an invocation to bindService.
The former behaviour is modelled directly in π-Perms by a function call, while
the latter is subtler and its encoding leads to some interesting findings (see
below). Broadcast communication can be captured by a sequence of function
invocations: this simple treatment suffices for our present security analysis.

Protection mechanisms. π-Perms is defined around a generic complete lattice
of permissions. In Android this lattice is built over permission sets, with set in-
clusion as the underlying partial order. The Android communication API only
allows broadcast transmissions to be protected by permissions, namely requiring
receivers to be granted specific permissions to get the intent. Function invocation
in π-Perms accounts for the more general behaviour available to broadcast trans-
missions, since unprotected communication can be encoded simply by specifying
⊥ as the permission required to the callee, as in n〈m .⊥〉.

Binders. In Android a component can invoke the method bindService to es-
tablish a connection with a service and retrieve an IBinder object, which trans-
parently dispatches method calls from the client to the service. This behavior is
captured in π-Perms by relying on its provision for dynamic component creation.
To illustrate, let D contain the following service definition:

D , s(x / C).[P] (νb) (b(y /⊥).[P] a〈y .⊥〉 \ b) (1)

and consider the π-Perms encoding of a component binding to service s:

a(x / P).[P]E ∧D \ [C] let z = s〈n .⊥〉 in z〈n .⊥〉

Service s runs with permissions P and requires permissions C to establish a
connection. When a connection is successfully established, the service returns
a fresh binder b, encoded as a function granted the same permissions P as s;
later, the client can perform an invocation to b (bound to z) to get access to the
function a. The example unveils a potentially dangerous behaviour of the current
Android implementation of IBinder’s: notice in particular that the function b
may be invoked with no constraint, even though binding to s was protected by
permissions C. We find this implementation potentially dangerous, since it is
exposed to privilege escalation when binders are improperly disclosed.

Pending intents. π-Perms can naturally encode the simple form of permission
delegation enabled by pending intents: “by giving a PendingIntent to another
application, you are granting it the right to perform the operation you have
specified as if the other application was yourself (with the same permissions and
identity)” [15]. This informal description perfectly fits the previous encoding of
binders in π-Perms, in that any component exposed to the binder b is allowed
to invoke the corresponding function and let it run with permissions P. Hence,
pending intents can be modelled in the very same way as binders, and are exposed
to the same weaknesses whenever they are inadvertently disclosed.

4 Privilege escalation (formally)

Davi et al. first pointed out a conceptual weakness in the Android permission
system, showing that it is vulnerable to privilege escalation attacks [5]. To il-
lustrate, consider three applications A, B and C. Application A is granted no
permission; application B, instead, is granted permission P, which is needed to
access C. Apparently, data and requests from A should not be able to reach C;
on the other hand, if B can be freely accessed from A, then it may possibly act
as a proxy between A and C.

We formalize a notion of safety against privilege escalation based on the IPC
Inspection mechanism proposed by Felt et al. to dynamically prevent privilege
escalation attacks on Android [11]. The idea behind IPC Inspection is simple:
when an application receives a message from another application, a centralized
reference monitor lowers the privileges of the recipient to the intersection of
the privileges of the two interacting applications. A patched Android system
implementing IPC Inspection is therefore protected against privilege escalation
attacks “by design”: we then take such a system as a reference specification and
state a simulation-based notion of safety on top of it. As we discuss at the end of
this section, the resulting definition provides an effective proof technique for the
characterization of privilege escalation safety based on non-interference in [12].

To formalize the semantics of the IPC inspection mechanism, we first anno-
tate each function definition of a given expression with a distinct label ` drawn
from a denumerable set L, disjoint from the set of values. The annotations make
it possible to univocally identify the function triggered in response to each call,
and hence trace the call chain. The IPC inspection semantics is then rendered
formally by the labelled reduction relation E α−→i E

′ in Table 3, where α ranges
uniformly over the set of annotation labels and the distinguished symbol · /∈ L.

Note that, while the labelled transitions help tracking the dynamics of the
call chains, the labels themselves do not have any import at runtime: in fact,
function invocations do not mention labels at all and the semantics is still non-
deterministic. We similarly label the original semantics in Table 2.

Let now E1 � E2 denote two expressions that are syntactically equal but for
their granted permissions (see the online technical report for a formal definition).

Definition 1 (IPC-Simulation). A binary relation R contained in � is an
IPC-simulation if and only if whenever E1RE2 and E1

α−→ E′
1 there exists E′

2

(R-Call-IPC)
RECV v PERMS

′
CALL v PERMS

n`(x / CALL).[PERMS′]E \ [PERMS]n〈m . RECV〉 `−→i [PERMS u PERMS
′]E{m/x}

(R-Return-IPC)
let x = [PERMS]n in E

·−→i E{n/x}

(R-Context-IPC)
E

α−→i E
′

C[E]
α−→i C[E′]

(R-Struct-IPC)
E WE1

α−→i E2

WE′

E
α−→i E

′

Table 3. Reduction semantics for π-Perms under IPC Inspection

such that E2
α−→i E

′
2 with E′

1RE′
2. We say that E1 is IPC-simulated by E2

(written E1 4IPC E2) iff there exists an IPC-simulation R such that E1RE2.

The requirement E1 � E2 guarantees that the labels that annotate the func-
tion definitions occurring in the two expressions are consistent (i.e., the same
function bears the same label in E1 and E2) while disregarding any difference in
the assigned permissions introduced upon reduction (cf. (R-Call) against (R-
Call-IPC)). Given the previous definition, our notion of safety is immediate:
an expression E is safe if and only if all its possible executions are oblivious to
IPC Inspection being enabled or not.

Definition 2 (Safety). An expression E is safe against privilege escalation if
and only if E 4IPC E.

Though our definition is inspired by IPC Inspection, it reveals an important
aspect which was never discussed before. Namely, we notice that improper dis-
closure of some specific data, such as binders or pending intents, may lead to
the development of applications which are unsafe according to Definition 2. This
is precisely the case of example (1) where b exercises permissions P, but can be
disclosed to any component which is granted permissions C. A sample Android
application suffering of a similar flaw is given in the online technical report.

Our notion of safety is already a strong property, but we target a more am-
bitious goal: we desire protection despite the best efforts of an active opponent.
In our model an opponent is a malicious, but unprivileged, Android application
installed on the same device. Notice that the term “unprivileged” is loosely used
here: we are not assuming that the opponent is granted no permission at all, but
rather that it is not assigned any sensitive permission beforehand (in that case,
it would have no reason in escalating privileges). In a typical security analysis,
one can single out all the permissions under the control of the opponent (e.g.,
INTERNET) and identify the set of these permissions with ⊥.

Definition 3 (Opponent). A definition O is an opponent if and only if each
permission assignment in O is ⊥.

Definition 4 (Robust Safety). An expression E is robustly safe against pri-
vilege escalation if and only if O \E is safe for all opponents O.

Privilege escalation and non-interference. As we anticipated, a recent paper by
Fragkaki et al. [12] proposes a definition of safety against privilege escalation in-
spired by the classic notion of non-interference for information flow control. Their
definition essentially demands that any call chain ending in a “high” (permission-
protected) component exists in a system only if it exists in a variant of same
system, where the “low” (unprivileged) components have been pruned away. We
can rephrase their notion in our setting and prove that our definition implies,
and hence may be employed as a proof technique for, theirs.

Let |E|` denote the expression obtained from E by erasing all the function
definitions labelled with `′ 6= ` and which are granted permissions P @ CALL,
where CALL are the permissions required to invoke the function identified by `.

Definition 5 (NI-Safety). An expression E is NI-safe if and only if, for every
` occurring in E and for every reduction sequence E α1−→ . . .

αn−−→ En
`−→ En+1,

there exist E′
1, . . . , E

′
n+1 such that |E|`

α1−→ . . .
αn−−→ E′

n
`−→ E′

n+1.

Proposition 1 (Safety vs NI-safety). Safety implies NI-safety.

Proof. Let E 4IPC E and assume E α1−→ E1
α2−→ . . .

αn−−→ En
`−→ En+1. Since

E 4IPC E, we know that E α1−→i E
′
1

α2−→i . . .
αn−−→i E

′
n

`−→i E
′
n+1 for some

E′
1, . . . , E

′
n+1 such that E1 � E′

1, . . . , En+1 � E′
n+1. By definition of the seman-

tics α−→i, we know that all the functions invoked in the call chain identified by
α1, . . . , αn must be granted at least the permissions CALL needed to invoke `.
Hence, such function definitions are present also in |E|` and we can mimic the
very same trace there.

We can thus confirm that the IPC Inspection mechanism enforces a reason-
able semantic security property and justify further our choice of taking it as the
building block for our safety notion. With respect to NI-safety, our notion has
the important advantage of enabling a powerful form of coinductive reasoning,
which is central to proving our main result (Theorem 2 below).

A still open question is if the two notions of safety are actually equivalent. We
notice that for non-deterministic transition systems (bi)simulation-based equiv-
alences are typically finer than trace equivalences, but at the time of writing we
were not able to identify a counterexample in our setting.

5 Preventing privilege escalation by types and effects

Types and typing environments. A type τ may be either Un or a function type
Fun(CALL, τ → τ ′)SECR. Type Un is the base type, which is used both as a building
block for function types and to encompass all the data which are under the
control of the opponent. Types of the form Fun(CALL, τ → τ ′)SECR are inhabited
by functions which input arguments of type τ and return results of type τ ′.
Functions with this type can be invoked only by callers which are granted at
least permissions CALL, and should only be disclosed to components running

with at least permissions SECR. We define the secrecy level of a type τ , written
S(τ), as expected, by having S(Un) = ⊥ and S(Fun(CALL, τ → τ ′)SECR) = SECR.
A typing environment Γ is a finite map from values to types. The domain of Γ ,
written dom(Γ), is the set of the values on which Γ is defined.

Typing values. The typing rules for values are simple and given in Table 4.

(T-Proj)
Γ (v) = τ

Γ ` v : τ

(T-Pub)
Γ ` v : τ S(τ) = ⊥

Γ ` v : Un

Table 4. Typing rules for values

Rule (T-Proj) is standard, while rule (T-Pub) makes it possible to treat all
public data as “untyped”, since they may possibly be disclosed to the opponent.

Typing expressions. The typing rules for expressions are in Table 5. The main
judgement Γ `P E : τ I Q is read as: expression E, running with permissions P,
has type τ in Γ and exercises at most permissions Q throughout its execution.
We also define an auxiliary judgement Γ ` D to be read as: definition D is
well-formed in Γ . The two judgement forms are mutually dependent.

We first notice that our effect system discriminates between granted and
exercised permissions. For instance, the expression a(x/⊥).[P] b〈n.⊥〉 \E could
either be well-typed or not, even though the function a is publicly known, but
is granted permissions P A ⊥. The crux here is if the permissions P must be
actually exercised or not to perform the invocation to b.

Apparently, we could enforce protection against privilege escalation by simply
checking for each function definition that the privileges exercised by the func-
tion body are at most equal to the privileges required to invoke the function.
However, since binders and pending intents allow indiscriminate access to poten-
tially privileged components, our type system must also assign an appropriate
secrecy level to these sensitive data and prevent their inadvertent disclosure. It
turns out that in rule (T-Def) we must actually check that the permissions Q
exercised by the function body must be at most equal to the join between the
permissions CALL, needed to pass the security runtime checks upon invocation,
and the permissions SECR, needed to learn the name of the function.

Interestingly, the opponent can play an active role in trying to get binders
and pending intents under its control. In particular, by using rules (T-Def-Un)
and (T-Call-Un), it can define arbitrary new functions and invoke existing
ones, completely disregarding the restrictions enforced by typing. Protecting
well-typed components requires then some care: for instance, in rule (T-Def)
we must type-check public functions under the additional assumption that their
input parameter is provided by the opponent with type Un; of course, in this case

(T-Def)
Γ ` u : Fun(CALL, τ → τ ′)SECR

Γ, x : τ `> E : τ ′ I Q Q v CALL t SECR

CALL t SECR = ⊥ ⇒ Γ, x : Un `> E : Un I ⊥ x /∈ dom(Γ)

Γ ` u(x / CALL).E

(T-Conj)
Γ ` D1 Γ ` D2

Γ ` D1 ∧D2

(T-Eval)
Γ ` D Γ `P E : τ I Q

Γ `P D \E : τ I Q

(T-Call)
Γ ` u : Fun(CALL, τ → τ ′)SECR Γ ` v : τ
⊥ @ RECV t SECR CALL t SECR v P

Γ `P u〈v . RECV〉 : τ ′ I CALL t SECR

(T-Val)
Γ ` v : τ

Γ `P v : τ I S(τ)

(T-Fail)
Γ ` u : Fun(CALL, τ → τ ′)SECR

Γ ` v : τ ′′

RECV t SECR = ⊥ ⇒ S(τ ′′) = ⊥
CALL 6v P

Γ `P u〈v . RECV〉 : Un I P

(T-Perms)
Γ `Q E : τ I R

Q v P

Γ `P [Q]E : τ I R

(T-Let)
Γ `P E : τ I Q

Γ, x : τ `P E′ : τ ′ I R x /∈ dom(Γ)

Γ `P let x = E in E′ : τ ′ I Q t R

(T-Restr)
Γ, n : τ `P E : τ ′ I Q n /∈ dom(Γ)

Γ `P (νn)E : τ ′ I Q

(T-Def-Un)
Γ ` u : Un

Γ, x : Un `⊥ E : Un I ⊥ x /∈ dom(Γ)

Γ ` u(x / CALL).E

(T-Call-Un)
Γ ` u : Un Γ ` v : Un
Γ `⊥ u〈v . RECV〉 : Un I ⊥

Table 5. Typing rules for definitions and expressions

no privilege must be exercised. Similarly, in rule (T-Call) we cannot trust the
return type of a function when the invocation can be dispatched to the opponent:
this justifies the third premise of the rule.

Rule (T-Fail) allows to provide an argument of arbitrary type to any func-
tion which will never be invoked at runtime, since the caller is granted permis-
sions P, but the function requires permissions CALL 6v P to be invoked. Again,
the information CALL in the function type can be trusted only when the function
is not defined by the opponent, hence some additional care is needed to prevent
secrecy violations in that case (see the third premise of the rule). Note that, due
to such a possible interaction with the opponent, the exercised permissions are
conservatively assumed to be P, i.e., all the permissions granted to the caller.

We conclude the description of the type system with an important remark on
expressiveness. Some of the constraints imposed by our typing rules are rather
restrictive for practical use, but are central to enforcing the conditions of Defini-

tion 2 and its robust variant. Our implementation, however, features a number of
escape hatches based on Java annotations to keep programming practical, much
in the spirit of the declassification/endorsement constructs customary to the lit-
erature on information-flow control. We discuss this point further in Section 6.

Example type-checking. We briefly discuss how example (1) is deemed as ill-typed
according to our type discipline. We first note that, since function a requires
permissions P to be called, the invocation a〈y.⊥〉 is assigned at least the effect P
by (T-Call). Hence, the only possible way to type-check the function definition
b(y / ⊥).[P] a〈y . ⊥〉 through (T-Def) is by assigning b a function type τ such
that S(τ) = P. Assuming that the service s is a public component, this implies
that the function definition s(x / C).[P] (νb) . . . \ b is ill-typed by (T-Def), since
the effect P assigned to the service body b by (T-Val) is not lesser or equal to
the permissions C required to invoke the service s.

Formal results. The safety result below follows by a “simulation-aware” variant
of a standard Subject Reduction theorem for our type system, which captures
the step-by-step relationships between the standard semantics and our reference
semantics. The proof relies on a co-inductive argument enabled by the Subject
Reduction theorem: full details can be found in the online technical report.

Theorem 1 (Type Safety). If Γ `> E : τ I P for any P, then E 4IPC E.

The next result states that our type system does not constrain the opponent.
Its proof follows by a simple structural induction.

Lemma 1 (Opponent Typability). Let O be an opponent and let Γ ` u : Un
for all u ∈ fnfv(O), then Γ ` O.

By combining the two previous results, we can prove our main theorem.

Theorem 2 (Robust Safety). Let S(τ) = ⊥ for every u such that Γ (u) = τ .
If Γ `> E : τ I P for any P, then E is robustly safe against privilege escalation.

6 Implementation

We have implemented the type system as a tool (Lintent) designed as a plug-in
for Android Lint, the widely popular utility distributed with Android’s ADT.

Lintent performs a number of static checks over permissions usage, analyz-
ing the application source code and the manifest permission declarations, and
eventually warning the developer in case of potential attack surfaces for privilege
escalation scenarios. As a byproduct of its analysis, Lintent is able to detect
over-privileged or under-privileged applications, and suggest fixes. Additionally,
Lintent infers and records the types of data injected into and extracted from in-
tents, while tracking the flow of inter-component message passing. This is needed
to prevent privilege escalation attacks exploiting improper disclosure of binders

or pending intents, and at the same time proves very effective in detecting com-
mon programming errors related to misuse of intents [16].

Lintent analyzes Java source code: in principle, the same analysis could be
performed on the Java bytecode, though reasoning about types at the bytecode
level is arguably more demanding than at source level [14]. Below, we give a brief
overview of the main features of the tool and of the the main challenges we had
to face during its development.

Type reconstruction. The hardest challenge for the implementation is related
to the widespread use of “untyped” coding patterns supported by the current
Android API. Consider, for instance, a simple scenario of intent usage with
multiple data types:

class SenderActivity extends Activity {
static class MySer implements Serializable { ... }

void mySenderMethod() {
Intent i = new Intent(this, ReceiverActivity.class);
i.putExtra("k1", 3);
i.putExtra("k2", "some_string");
i.putExtra("k3", new MySer());
startActivityForResult(i,0);

}
}

On the recipient side, intent “extras” are retrieved by freely accessing the
intent as if it was a dictionary, so the receiver may actually retrieve data of
unexpected type and fail at runtime, or disregard altogether some keys provided
by the sender [16].

class ReceiverActivity extends Activity {
static class WS implements Serializable { ... }

void onCreate(Bundle savedInstanceState) {
Intent i = getIntent();
String k1 = i.getStringExtra("k1"); // run-time type error!
WS o = (WS)i.getSerializableExtra("k3"); // dynamic cast fails!
// data associated to k2 is never extracted!

}
}

The example highlights a total lack of static control over standard intents
manipulation operations: with these premises, no type-based analysis can be
soundly performed. For this reason, intents are treated in Lintent as record
types of the form {k1 : T1, . . . , kn : Tn}, where each ki is a string constant and
each Ti is a Java type. This enforces a much stronger discipline on data passing
between components, which is consistent with our type system, where a function
type Fun(CALL, τ → τ ′)SECR constrains the caller in providing an argument of type

τ and the callee in returning a result of type τ ′. A similar discipline is crucial in
Android applications to protect the secrecy of binders and pending intents.

Notice that, since the putExtra method is overloaded to different types, the
type of the second argument of each call must be reconstructed in order to keep
track of the actual type of the value bound to each key. As a valuable byproduct
of this analysis, Lintent is able to warn the user in case of intents misuse.

Partial evaluation. As noted above, each piece of data put into an intent must
be bound to a key, hence an intent object can be seen as a dictionary of the
form {k1 7→ v1, . . . , kn 7→ vn}. Unfortunately, the dictionary keys are run-time
(String) objects and therefore plain expressions in Java. Whether they happen
to be string literals or the result of complex method calls computing a String
object is irrelevant: in any case they belong to the run-time world. The very
same problem arises for result codes and Intent constructor invocations: both
the sender component and the recipient class object supplied as arguments could
be results of computations, and the same holds true for action strings in case of
implicit intent construction. Partial evaluation is required for reconstructing the
intent record type labels described above.

API signatures and permissions. Implementing the rules of the type system for
π-Perms requires a preliminary analysis to detect the corresponding patterns in
the Android source code. The analysis is far from trivial given the complexity
of the Android communication API, which offers several different patterns to
implement inter-component communication. Moreover, many Android API calls
require non-empty permission sets and must be detected and tracked by our
tool: Lintent retrieves a set of mappings between API method signatures and
permissions from a set of external files2, which are thus updatable with no need
to rebuild the tool. Finally, Lintent must perform type resolution for third-
party libraries: access to jar files must be granted to the tool to let it inspect
the contents of imported packages and classes through the javap disassembler.

Java annotations support. We rely on Java annotations to provide some escape
hatches from the tight discipline imposed by Lintent. Several privileged com-
ponents intentionally expose functionalities, thus we define annotations of the
form @priv{endorse="P"} to mark methods such as onCreate() with a set of
permissions P that the type-checker will disregard. More precisely, if the method
exercises the permissions set Q, the associated component is deemed well-typed as
long as it is protected with at least permissions Q\P. A similar treatment is imple-
mented for pending intents based on the annotation @priv{declassify="P"},
to lower the secrecy level of such objects computed by Lintent.

7 Lintent: typing experiments and findings

At the time of writing Lintent is able to type-check activities, started services
and broadcast receivers. The current prototype should be considered in alpha
2 Currently such permission map files are those distributed with Stowaway [10].

stage, as we are currently performing tests, fixing bugs and adding support for
some missing Java language features. Still, we were able to analyze some exist-
ing open-source applications from the Google Play store and identify previously
unknown privilege escalation attacks on them. In our case studies we performed
a code refactoring to avoid the usage of some Java features which are still unsup-
ported by Lintent, like reflective calls and nested classes. However, our findings
are confirmed by running the original applications on a Nexus device.

The first case study we consider is APN-Switch, a widget that allows to
enable and disable the device data connection with a click. Of course, these
network operations are sensitive, hence the application requires the permission
CHANGE_NETWORK_STATE to be installed. Unfortunately, APN-Switch is exposed
to privilege escalation attacks: an unprivileged malicious application can forge an
intent to the action string ch.blinkenlights.android.apnswitch.CLICK and
simulate a click of the user on the widget, thus enabling (or disabling) the device
data connection as if it were granted the CHANGE_NETWORK_STATE permission.

Our second case study is Wifi Fixer, a small application aimed at fixing
several problems with the Android wifi. Also Wifi Fixer suffers of privilege
escalation attacks, since it requires the permission CHANGE_WIFI_STATE to tog-
gle on and off the wifi connection, but any unprivileged application can send an
intent to the action string org.wahtod.wififixer.ACTION_WIFI_OFF to discon-
nect the wifi. Interestingly, the widget handling the wifi connection is declared
as an internal component, hence it cannot receive intents from third-party ap-
plications; however, a public broadcast receiver in the application can act as a
proxy to the widget, thus allowing to escalate privileges.

Both APN-Switch and Wifi Fixer are released on the official Google Play
store, hence available to a wide audience. We argue that Lintent can prove help-
ful not only in detecting malicious code lying within existing source programs,
but also in assisting well-meaning developers in identifying potential attack sur-
faces for privilege escalation and many other common programming mistakes,
way before their applications reach the Google Play store.

8 Related work

The literature on Android application security is substantial, as reported in a
recent survey by Enck [6].

Android permissions. Davi et al. [5] were the first to point out the weaknesses
of the Android permission system with respect to privilege escalation attacks.
Later, Felt et al. proposed IPC Inspection as a possible runtime protection mech-
anism [11]. Though effective, IPC Inspection may induce substantial performance
overhead, as it requires to keep track of different application instances to make
the protection mechanism precise. In a recent paper, Bugiel et al. describe a
sophisticated runtime framework for enforcing protection against privilege es-
calation attacks [2]. Notably, their solution comprises countermeasures against
colluding applications, an aspect which is neglected by both IPC Inspection and

Lintent. Providing such guarantees, however, requires a centralized solution
built over the operating system. Our approach is complementary: runtime pro-
tection is useful against malicious applications which reach the Android market,
while static analysis techniques can prove helpful for well-meaning developers
who wish to assess the robustness of their applications. Finally, Felt et al. pro-
posed Stowaway, a tool for detecting overprivilege in Android applications [10].
In our implementation we take advantage of their permission map, which relates
API method calls to their required permissions.

Android communication. Chin et al. [4] were the first to study the threats related
to the Android message-passing system. They provide also a tool, ComDroid,
which is able to detect potential vulnerabilities in the usage of intents. ComDroid
does not provide any formal guarantee about the effectiveness of the proposed
secure communication guidelines; in our work, instead, we reason about intents
usage in a formal calculus and we are able to confirm many previous observa-
tions as sound programming practices. ComDroid does not address the problem
of detecting privilege escalation attacks. The robustness of inter-component com-
munication in Android has been studied also by Maji et al. through fuzzy testing
techniques, exposing some interesting findings [16]. Their empirical methodology,
however, does not provide any clear understanding of the correct programming
patterns for communication.

Formal models. π-Perms is partly inspired by a core formal language proposed
by Chaudhuri [3]. With respect to Chauduri’s model, π-Perms provides a more
thorough treatment of the Android system, including implicit communication,
runtime registration of new components, service binding and pending intents. In
later work, Fuchs et al. build on the calculus proposed by Chaudhuri to imple-
ment SCanDroid, a provably sound static checker of information-flow properties
of Android applications [13]. Another work by Fragkaki et al. discusses a number
of enhancements over the Android permission system and validates their effec-
tiveness in an abstract model [12] (cf. Section 4). The focus of the work remains
on runtime protection mechanisms, however, as opposed to static analysis. The
paper also discusses some issues related to controlled delegation, but it does it
independently from privilege escalation. Finally, Armando et al. proposed a for-
mal model of the Android operating system and a verification technique based
on history expressions [1]. However, any specific security analysis is left for future
work and no implementation is provided.

9 Conclusions

We have proposed a sound type-based analysis technique targeted at the static
detection of privilege escalation attacks on Android, and developed Lintent,
a prototype security type-checker which implements our analysis. Our tool ad-
dresses a number of engineering challenges which are central to the practical
development of any sound type-checker for Android applications. We showed
the effectiveness of our tool by unveiling real attacks on existing applications.

As part of our future work, we want to focus on the study of robust declas-
sification and endorsement programming patterns in our formal framework, to
assess the impact on security of the Java annotations discussed in Section 6.
On the practical side, we want to further develop Lintent and add support for
many features of the Android platform which are still missing. We also plan to
integrate Lintent with a frontend to a decompiler as ded [8] to support the
analysis of third-party applications.

Acknowledgements Work partially supported by MIUR PRIN Project “CINA:
Compositionality, Interaction, Negotiation and Autonomicity”, and conducted in
cooperation with SMC Treviso s.r.l. The third author was supported by a EU-
Regione Veneto funded fellowship within the POR FESR 2007 – 2013 Program,
Action 1.1.3.

References

1. Armando, A., Costa, G., Merlo, A.: Formal modeling and verification of the An-
droid security framework. In: TGC (2012)

2. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards taming privilege-escalation attacks on Android. In: NDSS (2012)

3. Chaudhuri, A.: Language-based security on Android. In: PLAS. pp. 1–7 (2009)
4. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-

munication in Android. In: MobiSys. pp. 239–252 (2011)
5. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege escalation attacks

on Android. In: ISC. pp. 346–360 (2010)
6. Enck, W.: Defending users against smartphone apps: Techniques and future direc-

tions. In: ICISS. pp. 49–70 (2011)
7. Enck, W., Gilbert, P., gon Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:

Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI. pp. 393–407 (2010)

8. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of Android application
security. In: USENIX Security Symposium (2011)

9. Enck, W., Ongtang, M., McDaniel, P.D.: Understanding Android security. IEEE
Security & Privacy 7(1), 50–57 (2009)

10. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: CCS. pp. 627–638 (2011), http://www.android-permissions.org/

11. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: Attacks and defenses. In: USENIX Security Symposium (2011)

12. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing Android’s
permission system. In: ESORICS. pp. 1–18 (2012)

13. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifica-
tion of Android applications (2009), Technical report, University of Maryland.

14. Gagnon, E., Hendren, L.J., Marceau, G.: Efficient inference of static types for Java
bytecode. In: SAS. pp. 199–219 (2000)

15. Google Inc: Reference documentation for android.app.PendingIntent. http://
developer.android.com/reference/android/app/PendingIntent.html

16. Maji, A.K., Arshad, F.A., Bagchi, S., Rellermeyer, J.S.: An empirical study of the
robustness of inter-component communication in Android. In: DSN (2012)

http://www.android-permissions.org/
http://developer.android.com/reference/android/app/PendingIntent.html
http://developer.android.com/reference/android/app/PendingIntent.html

	Lintent: towards security type-checking of Android applications

