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Abstract. Access control is widely used in large systems for restricting resource
access to authorized users. In particular, role based access control (RBAC) is a
generalized approach to access control and is well recognized for its many ad-
vantages in managing authorization policies.
This paper considers user-role reachability analysis of administrative role based
access control (ARBAC), which defines administrative roles and specifies how
members of each administrative role can change the RBAC policy. Most exist-
ing works on user-role reachability analysis assume the separate administration
restriction in ARBAC policies. While this restriction greatly simplifies the user-
role reachability analysis, it also limits the expressiveness and applicability of
ARBAC. In this paper, we consider analysis of ARBAC without the separate
administration restriction and present new techniques to reduce the number of
ARBAC rules and users considered during analysis. We also present a number of
parallel algorithms that speed up the analysis on multi-core systems. The exper-
imental results show that our techniques significantly reduce the analysis time,
making it practical to analyze ARBAC without separate administration.

1 Introduction

Access control is widely used for restricting resource access to authorized users. In par-
ticular, role based access control (RBAC) [2] is broadly recognized as a generalized
approach to access control that has many advantages in performing authorization man-
agement. An RBAC policy is a tuple 〈U,R, P,UA,PA〉 where U , R and P are finite
sets of users, roles, and permissions, respectively. UA ⊆ U × R represents the user-
role assignment relation and PA ⊆ P × R represents the permission-role assignment
relation. RBAC also supports role hierarchy: r1 � r2 specifies that r1 is senior to r2 (or
r2 is junior to r1), which implies that every member of r1 is also a member of r2, and
every permission assigned to r2 is also available to members of r1.

Administrative role-based access control (ARBAC’97) [17] defines administrative
roles and specifies how members of each administrative role can change the RBAC
policy. ARBAC specifies user-role administration which controls the way changes are
made to the user-role assignments. This control is enforced by two types of rules:
(1) can assign(ra, c, rt) that grants an administrative role ra permission to assign a
target role rt to any user who satisfies the precondition c, and (2) can revoke(ra, rt)



that grants an administrative role ra permission to revoke a target role rt from a user.
The precondition c is a conjunction of literals, where each literal is either r (positive
precondition) or ¬r (negative precondition) for some role r. ARBAC’97 requires sep-
arate administration [22], i.e., administrative roles cannot be target roles in can assign
and can revoke rules or appear in the preconditions. In the rest of this paper, we repre-
sent the precondition c as P ∧ ¬N where P contains all positive preconditions and N
contains all negative preconditions in c.

The correctness of ARBAC policies is critical to system security because any design
flaws and human specification errors in ARBAC may result in the leak of confidential
data to unauthorized users. Large organizations may have large ARBAC policies. In
such organizations, manual inspection of ARBAC policies for correctness can be im-
practical because actions performed by different administrators may interfere with each
other in subtle ways. Thus, automated analysis algorithms are essential to ensure that
an ARBAC policy conforms to the desirable correctness properties.

This paper considers the user-role reachability analysis of ARBAC [22], which asks
“given an RBAC policy φ, an ARBAC policy ψ, a set of users U , a target user ut, and a
set of roles (called the “goal”), is it possible for users in U ∪ {ut} to assign ut to roles
in the goal”? Since many security analysis problems, such as user-role availability [16],
role containment [16], and weakest precondition [22], can be reduced to this problem,
user-role reachability is crucial for ARBAC analysis.

Researchers have shown that user-role reachability analysis is intractable even un-
der various restrictions on the ARBAC policy [16, 18]. Most existing research on user-
role reachability analysis [9, 8, 14] follows the definition of ARBAC’97 that assumes
separate administration. By disallowing an administrative role to serve as the target
role in any of the ARBAC rules, it is sufficient to consider the user-role assignments
of only the target user. However, in practice, the separate administration restriction
does not always hold. For example, a university ARBAC policy may specify that the
role DeptChair can assign a member of role Faculty to role AdmissionComittee,
which can in turn assign any user to role Student. Formally, this specification
translates to the rules can assign(DeptChair, Faculty, AdmissionComittee) and
can assign(AdmissionCommittee, true, Student), which do not satisfy the sepa-
rate administration restriction.

Analysis of ARBAC without separate administration is significantly more challeng-
ing because we need to consider administrative actions that change the role member-
ships of all users, not only the target user. For example, a non-target user u may assign
another non-target user u1 to an administrative role, which can in turn change the role
assignments of the target user. Stoller et al. [22] tackled this problem by developing an
algorithm that is fixed parameter tractable with respect to the number of users and mixed
roles. That is, the algorithm is exponential to the number of users and mixed roles, but
is polynomial to the size of the policy when the number of users and mixed roles is
fixed. However, since the number of users is usually large in large organizations, the
algorithm does not scale well when analyzing ARBAC policies in such organizations.
For example, we have applied this algorithm to analyze a university ARBAC policy
containing 150 users and the program failed to terminate within 12 hours for 3 out of
the 10 randomly generated queries.



Contributions: This paper presents a number of reduction techniques that improve the
scalability of the algorithm in [22]. Our main contributions are summarized below.

– We propose two static reduction techniques – optimized slicing (Section 3.1) and
hierarchical rule reduction (Section 3.4) – to reduce the number of ARBAC rules
considered during analysis.

– We develop a user equivalent set reduction technique that reduces the number of
users considered during analysis (Section 3.2).

– We propose a lazy reduction technique that delays performing unnecessary transi-
tions (Section 3.3).

– We present several parallel algorithms, which speed up the analysis on multi-core
or multi-processor platforms (Section 4).

– We evaluate the effectiveness of our reduction techniques and our parallel algo-
rithms on an ARBAC policy representing a university administration. The experi-
mental results show that our techniques significantly reduce the analysis time.

Organization: The rest of the paper is organized as follows. Section 2 describes the
user-role reachability analysis algorithm for ARBAC without separate administration
developed in [22]. Sections 3 and 4 present our reduction techniques and our parallel
algorithms, respectively. The experimental results are given in Section 5, followed by a
discussion of related research in Section 6. Section 7 concludes the paper.

2 Preliminaries: User-Role Reachability Analysis of ARBAC

User-role reachability analysis of ARBAC [22] asks: “given an RBAC policy φ, an
ARBAC policy ψ, a set of users U , a target user ut, and a set of roles (called the “goal”),
is it possible for users in U ∪ {ut} to assign ut to all roles in the goal”? Let UA0 be
a set of all user-role assignments in φ. The user-role reachability analysis instance is
represented as a tuple I = 〈UA0, ut, ψ, goal〉.

Stoller et al. [22] presented an algorithm for analyzing ARBAC without separate
administration, which is formalized in Algorithm 1. The algorithm is fixed parameter
tractable with respect to the number of users and mixed roles. A role is negative if it
appears negatively in some precondition in the policy; other roles are non-negative. A
role is positive if it appears in the goal, appears positively in some precondition in the
policy, or is an administrative role; other roles are non-positive. A role that is both neg-
ative and positive is a mixed role. Note that their algorithm is applied to ARBAC with-
out role hierarchy; ARBAC with role hierarchy can be converted to the corresponding
non-hierarchical policy using the algorithm in [18]. Let I = 〈UA0, ut, ψ, goal〉 be a
user-role reachability analysis problem instance. The algorithm works as follows.

First, the algorithm performs a slicing transformation (function slicing in Line
3), which back-chains along the ARBAC rules to identify roles and rules relevant to
the goal, and then eliminates the irrelevant ones. Function slicing takes into account
whether a role appears positively or negatively in the policy, and computes a set Rel+
of positive roles and a set Rel− of negative roles that are relevant to the goal. A set
RelRule of relevant rules is computed as a collection of all can assign rules whose



Algorithm 1 The User-Role Reachability Analysis Algorithm in [22].
1: Processed = Rel+ = Rel− = ∅; RelRule = ∅;
2: procedure analysis(UA0, ut, ψ, goal)
3: (Rel+, Rel−, RelRule) = slicing(UA0, ψ, goal); W = Reached = {closure(UA0)};
4: if goal ⊆ {r | (ut, r) ∈ closure(UA0)} then return true; end if
5: while W 6= ∅ do
6: remove a state s from W ;
7: for all can assign(ra, P ∧ ¬N, r) ∈ RelRule do
8: for all (user u ∈ U ) do
9: if (r ∈ (Rel+ ∩ Rel−), (u, r) 6∈ s, P ⊆ {r | (u, r) ∈ s}, N ∩ {r | (u, r) ∈ s} = ∅,

and (u′, ra) ∈ s for some user u′)

10: then s′ = closure(s ∪ {(u, r)}); add transition s
ua(ra,u,r)→ s′ to G;

11: if goal ⊆ {r|(ut, r) ∈ s′} then return true; end if
12: if s′ 6∈ Reached then W =W ∪ {s′}; Reached = Reached ∪ {s′} end if
13: end if end for end for
14: for all (can revoke(ra, r) ∈ RelRule)
15: for all (user u ∈ U )
16: if ((u, r) ∈ s and (u′, ra) ∈ s for some user u′)

17: then s′ = closure(s \ {(u, r)}); add transition s
ur(ra,u,r)→ s′ to G;

18: if goal ⊆ {r | (ut, r) ∈ s′} then return true; end if
19: if s′ 6∈ Reached then W =W ∪ {s′}; Reached = Reached ∪ {s′} end if
20: end if end for end for
21: end while
22: return false;

23: procedure slicing(UA0, ψ, goal)
24: if goal = ∅ then return (∅, ∅, ∅) end if
25: Processed = Processed ∪ goal; R+ = goal; R− = ∅; Rule = ∅;
26: for all can assign(ra, P ∧ ¬N, r) ∈ ψ where r ∈ goal do
27: (R1, R2, R3) = slicing(UA0, ψ, ({ra} ∪ P ) \ Processed); R+ = R+ ∪R1;
28: R− = R− ∪N ∪R2; Rule = Rule ∪ {can assign(ra, P ∧N, r)} ∪R3;
29: end for
30: RelRev = {can revoke(ra, r) ∈ ψ | r ∈ R−}; Rule = Rule ∪RelRev;
31: for all can revoke(ra, r) ∈ RelRev where ra 6∈ Processed do
32: (R4, R5, R6) = slicing(UA0, ψ, {ra}); R+ = R+ ∪R4;
33: R− = R− ∪R5; Rule = Rule ∪R6

34: end for
35: return (R+, R−, Rule)

36: procedure closure(s)
37: s1 = s;
38: for all can assign(ra, P ∧ ¬N, r) ∈ RelRule do
39: for all user u ∈ U do
40: if (r ∈ (Rel+ \Rel−), (u, r) 6∈ s, P ⊆ {r | (u, r) ∈ s}, N ∩ {r | (u, r) ∈ s} = ∅, and

(u′, ra) ∈ s for some user u′)
41: then s1 = s1 ∪ (u, r); end if end for end for
42: if s == s1 then return s1; else return closure(s1);



targets are in Rel+ and all can revoke rules whose targets are in Rel−; only rules in
RelRule need to be applied during analysis.

Next, the algorithm constructs a reduced transition graphG using rules inRelRule.
Each state inG is a set of user-role assignments and each transition describes an allowed
change to the state defined by the ARBAC policy ψ. A transition is either ua(ra, u, r)
which specifies that an administrative role ra adds user u to role r, or ur(ra, u, r)
which specifies that an administrative role ra revokes user u from role r. The follow-
ing reductions are applied: (1) Transitions that revoke non-negative roles (i.e., roles in
Rel+ \Rel−) or add non-positive roles (i.e., Rel− \Rel+) are prohibited because they
do not enable any other transitions; (2) Transitions that add non-negative roles or revoke
non-positive roles are invisible; such transitions will not disable any other transitions.
Transitions that add or revoke mixed roles are visible. The invisible transitions together
with a visible transition form a single composite transition.

The graphG is constructed as follows. First, the algorithm computes closure(UA0),
which is the largest state that is reachable from UA0 by performing all invisible tran-
sitions enabled from UA0 (function closure in Line 3). The algorithm then computes
a set of all states reachable from closure(UA0) (Lines 5–21), and returns true iff there
exists a state s in G such that goal ⊆ {r | (ut, r) ∈ s} (Lines 4, 11, and 18).

In [22], they have also identified a condition called the hierarchical role assignment
(HRA), under which analysis of ARBAC without separate administration can be reduced
to analysis of ARBAC with separate administration. An ARBAC policy satisfies HRA
if, for all can assign(ra, P ∧ ¬N, r) where r is an administrative role, ra � r.

Example 1 Consider the following ARBAC policy ψ and the reachability analysis
problem for this policy with the initial RBAC policy UA0 = {(u1, r1), (u1, r3),
(u2, r2), (u2, r8), (u3, r2), (u3, r8), (ut, r6)}, the target user ut, and the goal {r5}.

1. can assign(r1, {r2} ∧ ¬∅, r3) 2. can assign(r6, {r4, r3} ∧ ¬∅, r5)
3. can assign(r1, {r6} ∧ ¬{r3}, r4) 4. can assign(r2, {r8, r1} ∧ ¬∅, r6)
5. can assign(r2, {r6} ∧ ¬∅, r7) 6. can revoke(r1, r2)
7. can revoke(r1, r3) 8. can revoke(r1, r4)

This policy does not satisfy the separate administration restriction, because role r6
is both an administrative role in rule 2 and a target role in rule 4.

First, the algorithm performs slicing to compute a setRel+ of positive relevant roles
and a set Rel− of negative relevant roles as follows. Initially, Rel+ contains all roles in
the goal, i.e. r5. Since the target role of rule 2 is r5, the algorithm adds positive precon-
ditions and administrative role of rule 2, i.e. r4, r3, and r6, to Rel+. The algorithm then
processes rules 1 and 3, whose target roles are r4 and r3, respectively, adds their posi-
tive preconditions and administrative roles, i.e. r2, r6, and r1, to Rel+, and adds their
negative preconditions, i.e. r3, to Rel−. Repeat this process until all roles in Rel+ are
processed, which results inRel+ = {r1, r2, r3, r4, r5, r6, r8} andRel− = {r3}. The set
of mixed roles is Rel+ ∩Rel− = {r3}; other roles are both positive and non-negative.
RelRule contains rules 1, 2, 3, 4, and 7.

Next, the algorithm computes the initial state closure(UA0). Since rule 3 is enabled
from UA0 and r4 is a non-negative role, (ut, r4) is added to UA0 through an invisible
transition. The algorithm then computes all states reachable from closure(UA0) using
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Fig. 1. Graph constructed in Example 1 using the algorithm in [22].

rules in RelRule. The resulting graph is given in Figure 1. Because the graph does not
contain (ut, r5), the goal is not reachable. 2

3 Reduction Techniques

The analysis algorithm described in Section 2, although simple, does not scale well for
policies containing a large number of users. Let I = 〈UA0, ut, ψ, goal〉 be a user-role
reachability analysis problem instance. In this section, we present a number of tech-
niques for reducing the number of users and ARBAC rules considered during analysis.

3.1 Optimized Slicing

In this section, we present an approach to reduce the number of roles processed during
slicing, and hence reduce the number of relevant rules computed.

We say that a role is irrevocable if there does not exist a can revoke rule that revokes
the role. For the target user ut, we apply function slicing defined in Algorithm 1 to
perform slicing, except that Line 27 in the algorithm is replaced with the following:

S = {r | r ∈ (P ∪ {ra}) ∧ (r is nonnegative or irrevocable) ∧(ut, r) ∈ UA0};
(R1, R2, R3) = slicing(UA0, ψ, (({ra} ∪ P ) \ S) \ Processed);

Similarly, Line 32 of Algorithm 1 is replaced with the following:

S = {ra | (ra is nonnegative or irrevocable) ∧(ut, ra) ∈ UA0};
(R4, R5, R6) = slicing(UA0, ψ, ({ra} \ S)); R+ = R+ ∪R4;

Basically, prior to slicing, we collect a set of nonnegative and irrevocable roles in
the ARBAC policy. During slicing, we do not slice nonnegative or irrevocable roles
assigned to the target user in the initial policy UA0. This is safe because such roles will
not be revoked during the analysis and hence we do not need to reassign such roles to



Algorithm 2 An Optimized Slicing Algorithm for Non-Target Users.
1: Processed = ∅;
2: procedure optslicing(UA0, ψ, goal)
3: if (goal == ∅) then return (∅, ∅, ∅); end if
4: Processed = Processed ∪ goal; R+ = goal; R− = ∅; Rule = ∅;
5: for all can assign(ra, P ∧ ¬N, r) where (ut, r) ∈ goal do
6: if ((u, ra) ∈ UA0 for some user u and (ra is non-negative or irrevocable)) then
7: R1 = R2 = R3 = ∅;
8: else (R1, R2, R3) = slicing(UA0, ψ, {ra} \ Processed); end if
9: S = {r | r ∈ P ∧ (r is non-negative or irrevocable) ∧(ut, r) ∈ UA0};

10: (R′1, R
′
2, R

′
3) = optslicing(UA0, ψ, (P \ S) \ Processed);

11: R+ = R+ ∪ S ∪R1 ∪R′1; R− = R− ∪N ∪R2 ∪R′2; Rule = Rule ∪R3 ∪R′3;
12: end for
13: RelRev = {can revoke(ra, r) | r ∈ R−}; Rule = Rule ∪RelRev;
14: for all can revoke(ra, r) ∈ RelRev do
15: if ra 6∈ Processed ∧ (ra is negative ∨ra is a non-negative role not assigned to any user

in UA0) then
16: (R4, R5, R6) = slicing(ψ, {ra});
17: R+ = R+ ∪R4; R− = R− ∪R5; Rule = Rule ∪R6

18: end if
19: end for
20: return (R+, R−, Rule);

the target user. In addition, since a negative role may become non-negative after slicing,
to further reduce the number of relevant rules computed, we perform slicing multiple
times until the set of negative roles remains unchanged.

For non-target users, it is sufficient to apply only rules that assign such users to
administrative roles, which have permission to assign the target user ut to the goal. The
pseudocode is given in Algorithm 2.

The reduction is given in Lines 6–10 and 15–16 of Algorithm 2. For every
can assign(ra, P ∧ ¬N, r) where r ∈ goal, we check if ra is a nonnegative or
irrevocable role assigned to a user in UA0. If so, we do not slice ra; otherwise, we
apply function slicing defined in Algorithm 1 to slice ra (Lines 6–8). This is different
from Algorithm 1, in which ra is always sliced. Next, we compute a set S of all
nonnegative or irrevocable roles in P that are assigned to the target user in UA0, and
for every rule whose target role is in P \ S, we recursively call function optslicing to
slice the administrative roles of such rules (Lines 9–10). Note that we do not slice roles
in P for non-target users, while Algorithm 1 does. Finally, for every can revoke(ra, r),
if ra is a nonnegative or irrevocable role assigned to some user in UA0, we do not slice
ra (Lines 15–16).

Example: Consider the ARBAC policy and the query in Example 1. First, we com-
pute a set of relevant roles and rules for the target user ut using our optimized slicing
mechanism. Since r6 is a non-negative role assigned to ut in UA0, we do not slice
r6. Therefore, for the target user, Rel+ = {r1, r2, r3, r4, r5, r6}, Rel− = {r3}, and
RelRule = {1, 2, 3, 7}. Next, we compute a set of relevant roles and rules for non-



target users using our optimized slicing mechanism. Only administrative roles that have
permissions to assign the target user to the goal, i.e., r6 and r1, need to be sliced.
Since r6 and r1 are non-negative roles assigned to ut and u1 in UA0, respectively,
we do not slice these two roles. As a result, for non-target users, Rel+ = {r1, r6},
Rel− = {r3}, and RelRule = ∅. This means that there is no need to assign roles
to non-target users. The transition graph constructed with the optimized slicing con-
tains only one state {(u1, r1), (u1, r3), (u2, r2), (u2, r8), (u3, r2), (u3, r8), (ut, r6),
(ut, r4)}.

3.2 User Equivalent Set Reduction

In this section, we show that from each state it is sufficient to perform visible transitions
for the target user and non-target users assigned distinct sets of roles. Our technique is
based on a notion of user equivalent set defined below.

Definition 1 The user equivalent set w.r.t a state s is defined as ue(s) =
{(Uset1, Rset1), . . . , (Usetn, Rsetn)} where Rset1 6= . . . 6= Rsetn, Uset1 ∪ . . .
∪ Usetn = {u|(u, r) ∈ s}, and for every u ∈ Useti, Rseti = {r|(u, r) ∈ s}.

The user equivalent set w.r.t a state s is basically an alternative representation of
s, in which all users assigned the same set of roles are grouped together. Let Gue be
the transition graph constructed using the user equivalent set representation. There is a
transition ue(s) α→ ue(s′) in Gue if and only if there is a transition s α→ s′ in G. The
goal is reachable in Gue if and only if there exists a state sg ∈ Gue and (Uset,Rset) ∈
sg such that ut ∈ Uset, and goal ⊆ Rset.

Our user equivalent set reduction works as follows. For every state s and every
(Uset,Rset) ∈ s, we compute only transitions for the target user and transitions for
one randomly selected non-target user in Uset, if Uset contains such users. This is
different from Algorithm 1, which computes transitions for all users inUset. Intuitively,
the user equivalent set reduction is correct because transitions performed on all users
in Uset are the same, and transitions performed on one user in Uset do not disable
transitions performed on other users in Uset. We use Gredue to represent the transition
graph constructed with the user equivalent set reduction.

The correctness of the reduction is formalized in Theorem 1. Given two states s1
and s2, we say that s1 ≡ s2 if there exists a substitution δ = {u1/u′1, . . . , un/u′n},
where u1 6= . . . 6= un 6= ut and u′1 6= . . . 6= u′n 6= ut, such that s1δ = s2. For
example, {({u1, ut}, {r1, r2}), ({u2}, {r2})} ≡ {({u2, ut}, {r1, r2}), ({u1}, {r2})}
holds because there exists a substitution δ = {u1/u2, u2/u1} such that
{({u1, ut}, {r1, r2}), ({u2}, {r2})}δ = {({u2, ut}, {r1, r2}), ({u1}, {r2})}.

Theorem 1 Let I = 〈UA0, ut, ψ, goal〉 be a user-role reachability analysis instance,
and Gredue and Gue be transition graphs constructed for I with and without using the
user equivalent set reduction. The goal is reachable in Gue iff the goal is reachable in
Gredue.

Example: Consider the user-role reachability analysis instance in Example 1. Since
non-target users u2 and u3 are assigned the same set of roles in the initial state, we
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Fig. 2. The transition graph constructed with the user equivalent set reduction.

need to perform only transitions for u2 or u3, but not both, from the initial state. This
is different from Algorithm 1, which performs transitions for both u2 and u3 from the
initial state. The graph constructed with the user equivalent set reduction is given in
Figure 2, which contains 6 states and 9 transitions, i.e., 25% reduction on states and
47% on transitions.

Optimization: We can reduce the size of the state by replacing Uset in (Uset,Rset)
with a pair (counter, target), where counter records the number of non-target users
in Uset, and target is either 1 (ut ∈ Uset) or 0 (ut 6∈ Uset).

3.3 Delayed Revocation

In this section, we propose to reduce the size of the transition graph by delaying tran-
sitions that can neither enable new transitions in s nor be disabled by any transitions.

Formally, a transition s
ur(ra,u,r)→ s′ is not performed from s (i.e. is delayed) if

1. trans(s) = trans(s′) ∪ {ur(ra, u, r)} where trans(s) and trans(s′) are sets of
all visible transitions enabled from s and s′, respectively,

2. s \ s′ = {(u, r)},
3. ra is non-negative or irrevocable.

Rules 1 and 2 specify that s
ur(ra,u,r)→ s′ does not enable new visible and invisible

transitions, respectively. Rule 3 specifies that s
ur(ra,u,r)→ s′ cannot be disabled by other

transitions.
Given a state s, we compute transitions that can be delayed in s as follows. First, we

perform all ua transitions that assign users in s to roles. Next, for every ur transition that
is enabled in s, we check if the transition enables any transition. If so, we perform the
transition from s. Otherwise, we add the transition to a set Delayed. Since performing
ur transitions may enable new ua and ur transitions, after all can revoke rules are
processed, we compute new transitions and check if any transitions in Delayed enable
other transitions. If so, such transitions are performed from s and are removed from
Delayed. Repeat the above process until no new transitions are computed.

The correctness of the delayed revocation reduction is formalized in Theorem 2.



Theorem 2 Let I = 〈UA0, ut, ψ, goal〉 be a user-role reachability analysis instance,
s0 = closure(UA0), and Gdr and G be transition graphs constructed for I with and
without the delayed revocation reduction. The goal is reachable in G iff the goal is
reachable in Gdr.

Example: Consider the user-role reachability analysis instance in Example 1. Since
transition ur(r1, u1, r3) does not enable new transitions from the initial state and r1 is
non-negative, with delayed revocation reduction, this transition is not performed from
the initial state. The transition graph constructed contains 4 states and 8 transitions, i.e.,
50% reduction on the number of states and 47% reduction on the number of transitions.

3.4 Hierarchical Rule Reduction

Hierarchical rule reduction avoids considering rules whose administrative precondi-
tions are junior to non-negative or irrevocable administrative roles in UA0. This is safe
because senior roles inherit all administrative permissions of their junior roles, and
non-negative/irrevocable roles are never revoked during analysis. This reduction does
not reduce the size of the transition graph, but may reduce the analysis time since fewer
rules are applied during analysis.

Consider the user-role reachability analysis problem instance in Example 1 and
the role hierarchy r1 � r2. The following three rules are added after the pol-
icy is transformed into the non-hierarchical one: can assign(r1, {r8, r1} ∧ ¬∅, r6),
can assign(r1, {r6} ∧ ¬∅, r7), and can assign(r1, {r1} ∧ ¬∅, r3). Since r1 is a non-
negative role, r1 will never be revoked during analysis. As a result, rules 4 and 5 in
Example 1 are not useful for reaching the goal (since administrative roles of these two
rules are r2, which is junior to r1), and hence will not be applied during analysis.

4 Parallel Analysis Algorithm

Multi-core processors are becoming pervasive. In order for software applications to
benefit from the continued exponential throughput advances in new computer systems,
it is important to parallelize the applications. In this section, we extend Algorithm 1
to perform analysis in parallel. The pseudocode of our parallel algorithm is given in
Algorithm 3.

First, we perform slicing to eliminate irrelevant roles, as we do in Algorithm 1. We
then compute the initial state init of the transition graph and add init to a workset
W (Line 5). Next, we create n threads t0, . . ., tn (Line 6; || represents the concur-
rent execution of threads). Finally, each thread ti removes one state from W , com-
putes transitions enabled from the state using Lines 7 –10 and 14–17 of Algorithm 1,
and adds the target states to W and the set of reachable state Reached if the tar-
get states are not already in Reached (Lines 11–20). Since multiple threads may ac-
cess Reached at the same time, Reached needs to be protected by locks in order
to ensure the correct execution of the program. Obviously, locking and unlocking
Reached every time a thread accesses Reached imposes high overhead. To reduce
the time spent on waiting for locks to access Reached, we implemented Reached



Hash value :h1 S11 S12 S1k……Reached(h1)

Hash value: h2 S21 S22 S2r……Reached(h2)

……

Hash value: h m Sm1 Sm2 Smt……Reached(h ) Hash value: h m Sm1 Sm2 Smt……Reached(hm)

Fig. 3. Implementation of the set of reachable states Reached.

Algorithm 3 User-Role Reachability Analysis Algorithm in [22].
1: Reached =W = Rel+ = Rel− = ∅; RelRule = ∅; done = 0;
2: procedure mcanalysis(UA0, ut, ψ, goal)
3: (Rel+, Rel−, RelRule) = slicing(UA0, ψ, goal); init = closure(UA0);
4: if goal ⊆ {r | (ut, r) ∈ init} then return true; end if
5: W = Reached(h(init)) = {init};
6: start(t1) || . . . || start(tn);

7: procedure start(ti)
8: while !done do
9: if( W == ∅ and all threads are idle) then done = 1; end if

10: while (W 6= ∅)
11: lock(W ); remove a state s from W ; unlock(W );

12: for all transitions s
ua(ra,u,r)→ s′

13: if goal ⊆ {r | (ut, r) ∈ s′} then return true; end if
14: lock(Reached(h(s′));
15: if (Reached(h(s′)) does not exist)
16: Reached(h(s′)) = {s′}; unlock(Reached(h(s′)));
17: lock(W ); W =W ∪ {s′}; unlock(W );
18: else if (s′ 6∈ Reached(h(s′)))
19: Reached(h(s′)) = Reached(h(s′)) ∪ {s′}; unlock(Reached(h(s′)));
20: lock(W ); W =W ∪ {s′}; unlock(W );
21: else unlock(Reached(h(s′))); end if
22: end if end for end while
23: end while
24: return false;

as a hashtable shown in Figure 3. The hashtable is partitioned into multiple regions
Reached(h1), . . . , Reached(hm); Reached(hi) stores a set of states whose hash val-
ues are hi. Once a thread computes a transition s α→ s′, it computes the hash value
h(s′) of s′, locks Reached(h(s′)), adds s′ to Reached(h(s′)) if s′ is not already
in Reached(h(s′)), and unlocks Reached(h(s′)). The above approach enables two
threads to access two different regions in Reached simultaneously. Our experimental
results show that locking Reached(h(s)) instead of Reached significantly improves
the performance. This is because threads accessReached very frequently and checking



if a state is in Reached is relatively expensive. The algorithm terminates if the goal is
reached, or if W is empty and all threads are not performing any computation.

It is also possible to reduce the time spent on waiting for locks to access the workset
W by having each thread to have its own workset. Below, we present three approaches
to minimizing (or completely removing) the number of operations performed on lock-
ing/unlocking W .

– NoLock: In this approach, each thread is not allowed to access other threads’ work-
sets. Every time a thread computes a transition, it stores the target state in its own
workset, if the target state is not already in Reached. This approach eliminates the
requirement for locking, but may result in idle threads (due to empty workset).

– FullLock: In this approach, a thread is allowed to access other threads’ workset
to retrieve a state to process, if the thread’s workset is empty. This approach en-
sures that all threads will be approximately equally busy, but it requires to lock the
workset every time the workset is accessed.

– PartialLock: In this approach, whenever a thread ti computes a new transition,
it checks if thread t(i−1) mod n is idle. If so, it locks the workset of t(i−1) mod n,
adds the target state to the workset, unlocks the workset, and starts t(i−1) mod n.
The advantage of this approach is that locking is only needed when ti adds a state
to t(i−1) mod n’s workset. This approach has limitation that each thread ti has to
frequently check if t(i−1)modn is sleeping.

Discussion: Two threads can safely access the same region in Reached simultaneously
if neither thread adds a state to or removes a state from the same region. Thus, in some
cases, it may be possible to improve the performance by replacing mutual exclusion
locks on Reached with reader-writer locks. Unlike a mutual exclusion lock, which
prevents all concurrent accesses to a critical region, a reader-writer lock allows multiple
threads performing read operations to enter critical region. Our experiments, however,
show that such optimization does not yield performance improvement (in fact, it often
causes performance degradation). This is because multiple threads rarely access the
same region in Reached simultaneously during analysis, and reader-writer locks, due
to their complexity, impose greater overheads than mutual exclusion locks.

5 Performance Results

This section evaluates the effectiveness of our reduction techniques and our parallel
algorithms using the university ARBAC policy developed in [22] and the university
RBAC policy developed in [7]. All reported data were obtained on a 2.4GHz 2 Quad-
Core AMD Opteron Processor with 16GB RAM running Ubuntu 3.2.0.

The university RBAC and ARBAC policies contain 845 users, 32 roles, 329
can assign rules, and 78 can revoke rules, after being converted to the corresponding
non-hierarchical policies. The policies include rules for assignment of users to vari-
ous student and employee roles. Student roles include undergraduate student, graduate
student, teaching assistant, research assistant, honors student, etc. Employee roles in-
clude president, provost, dean, department chair, faculty, honor program director, etc. A
sample can assign rule is: the honors program director can assign an undergraduate



50 non-target users
NoReduct OptSlice DelayedRev UserEquivSet AllReduct

State 111 45 54 15 4
Transition 620 264 278 61 9

Time 0.97 0.41 0.57 0.13 0.09
75 non-target users

NoReduct OptSlice DelayedRev UserEquivSet AllReduct
State 24909 245 6393 273 5

Transition 214165 2168 42718 3222 10
Time 34.30 6.18 10.99 0.15 0.09

100 non-target users
NoReduct OptSlice DelayedRev UserEquivSet AllReduct

State 12706 7552 7855 39 6
Transition 145115 99520 107323 225 11

Time 2363 2029.26 2166.81 0.81 0.1

Table 1. Performance of analysis algorithms without reduction, with a single reduction, and with
all reductions.

student to the honors student role. A sample user-role reachability problem instance is:
can a user who is a member of the department chair role and a user who is a member
of the undergraduate student role assign the latter user to the honor student role?

The university ARBAC policy does not satisfy the separate administration restric-
tion. In addition, the policy has hierarchical role assignment w.r.t all administrative
roles except those for assigning users to roles honor student and graduate student. This
means that if the goal contains these two roles, then we cannot directly apply the algo-
rithm for analyzing ARBAC with separate administration to carry out analysis. In our
experiments, we randomly select one target user ut, one role r, and n non-target users
{u1, . . . , un}. We then apply analysis algorithms to check if users in {u1, . . . , un, ut}
together can assign ut to both honor student role and role r.

Effectiveness of Reduction Techniques Table 1 gives the the size of the transition
graph and the execution time for three sets of experiments with different numbers of
randomly chosen non-target users (50, 75 or 100). Each data point reported in the table
is an average over 8 randomly generated queries. The five columns represent reduction
techniques applied during the experiments: with no reduction (NoReduct), with opti-
mized slicing (OptSlice), with user equivalent set (UserEquivSet), with delayed revoca-
tion (DelayedRev), and with all reductions (AllReduct). Note that we do not include the
hierarchical rule reduction in the table as it is not effective in our experiments. This is
because all administrative roles in the university policy that have junior roles are mixed
roles and remain mixed after applying all reductions.

We observe that, while all reduction techniques improve the performance, their ef-
fectiveness varies under different queries. UserEquivSet performs the best for all three
sets of experiments and DelayedRev is the least effective. Integrating all reductions
leads to a very effective solution. When the problem becomes difficult for the baseline
algorithm to solve, AllReduct achieves an improvement of four orders of magnitude
in execution time. In addition, when the number of non-target users is 150, NoReduct
fails to complete 3 of the 8 queries within 12 hours, whereas the average analysis time
of AllReduct is only 0.1 seconds.



50 non-target users
15 threads 30 threads

NoReduct SharedWorkset NoLock FullLock PartialLock SharedWorkset NoLock FullLock PartialLock
Time 0.97 0.33 0.40 0.32 0.52 0.32 0.43 0.34 0.45

75 non-target users
15 threads 30 threads

NoReduct SharedWorkset NoLock FullLock PartialLock SharedWorkset NoLock FullLock PartialLock
Time 34.30 6.58 6.60 5.85 6.74 5.82 7.04 5.80 6.54

100 non-target users
15 threads 30 threads

NoReduct SharedWorkset NoLock FullLock PartialLock SharedWorkset NoLock FullLock PartialLock
Time 2363 1059.73 517.09 436.87 513.46 776.34 537.68 407.53 531.83

Table 2. Performance of the parallel algorithm without reduction.

Performance Results of Parallel Algorithms Table 2 gives the execution time of
four parallel analysis algorithms without reductions – SharedWorkset (Algorithm 3),
NoLock, PartialLock, and FullLock – with 15 and 30 threads. The results show that, on
average, FullLock performs the best, followed by PartialLock, NoLock, and Shared-
Workset. FullLock and SharedWorkset with 30 threads outperform those with 15
threads, because the threads often wait for locks to access the worksets in FullLock
and SharedWorkset, and hence more CPU cores are utilized with 30 threads than 15
threads. NoLock and PartialLock with 15 threads outperform those with 30 threads, be-
cause the threads do not or only occasionally wait for locks in NoLock and PartialLock,
and hence the CPU cores are mostly utilized with 15 threads.

6 Related Work

A number of researchers have studied user-role reachability analysis of ARBAC.
Schaad et al. [20] applied the Alloy analyzer [12] to check the separation of duty prop-
erties for ARBAC97; they did not consider preconditions for any operations. Li et al.
[16] presented algorithms and complexity results for various analysis problems for two
restricted versions of ARBAC97, called AATU and AAR; they did not consider negative
preconditions. Jayaraman et al. [14] presented an abstraction refinement mechanism for
detecting errors in ARBAC policies. Alberti et. al [1] developed a symbolic backward
algorithm for analyzing Administrative Attribute-based RBAC policies, in which the
policy and the query are encoded into a Bernays-Shonfinkel-Ramsey first order logic
formulas. Becker [3] proposed a language DYNPAL for specifying dynamic autho-
rization policies, which is more expressive than ARBAC, and presented techniques for
analyzing DYNPAL. Sasturkar et al. [19] showed that user-role reachability analysis
of ARBAC is PSPACE-complete, and presented algorithms and complexity results for
ARBAC analysis subject to a variety of restrictions. Stoller et al. [21] presented algo-
rithms for analyzing parameterized ARBAC. Gofman et al. [9] presented algorithms
for analyzing evolving ARBAC. Uzun et al. [23] developed algorithms for analyzing
temporal role-based access control models. However, none of the above works consider
analysis of ARBAC without separate administration.

Several researchers have considered analysis of ARBAC without separate admin-
istration. Stoller et al. [22] provided fixed-parameter tractable algorithms for ARBAC
with and without the separate administrative restriction. Their algorithm for analyzing



ARBAC without separate administration is exponential to the number of users in the
policy, which is usually large in practice. Our work significantly improved the scala-
bility of their algorithm by reducing the number of ARBAC rules and users considered
during analysis. Ferrara et al [4] converted ARBAC policies to imperative programs and
applied abstract-interpretation techniques to analyze the converted programs. However,
if the goal is reachable, their approach cannot produce a trace which shows how the
goal is reachable. Later, the same authors showed that if the goal is reachable in an AR-
BAC policy, then there exists a run of S with at most |administrative roles|+ 1 users in
which the goal is reachable [5]. However, their algorithm and reduction techniques are
different from ours. Their techniques can be combined with ours to further reduce the
analysis time. In addition, none of the above works present parallel analysis algorithms.

A number of researchers have considered analysis of fixed security policy [13, 15,
10, 11], analysis of a single change to a fixed policy, or analysis of differences between
two fixed policies [15, 6]. However, none of them consider analysis of ARBAC.

7 Conclusion and Future Work

This paper considers the user-role reachability analysis without the separate administra-
tion restriction, which was shown to be PSPACE-complete in general. We present new
analysis techniques with the goal of finding a practical solution to the problem. Our
techniques focus on reducing the number of ARBAC rules and users considered during
analysis and delaying unnecessary computations. We have also presented a number of
parallel algorithms that speed up the analysis on multi-core systems. The experimental
results on a university ARBAC policy show that our techniques significantly reduce the
analysis time. In the future, we plan to develop symbolic analysis algorithms to implic-
itly search the state space with a potential to further improve the performance of the
user-role reachability analysis.
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