
HAL Id: hal-01489959
https://inria.hal.science/hal-01489959

Submitted on 14 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enabling the Autonomic Management of Federated
Identity Providers

Christopher Bailey, David W. Chadwick, Rogério De Lemos, Kristy S. Siu

To cite this version:
Christopher Bailey, David W. Chadwick, Rogério De Lemos, Kristy S. Siu. Enabling the Auto-
nomic Management of Federated Identity Providers. 7th International Conference on Autonomous
Infrastructure (AIMS), Jun 2013, Barcelona, Spain. pp.100-111, �10.1007/978-3-642-38998-6_14�.
�hal-01489959�

https://inria.hal.science/hal-01489959
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enabling the Autonomic Management of
Federated Identity Providers

Christopher Bailey, David W. Chadwick, Rogério de Lemos, Kristy W. S. Siu

School of Computing, University of Kent, UK
{c.bailey, d.w.chadwick, r.delemos, k.w.s.siu}@kent.ac.uk

Abstract. The autonomic management of federated authoriza-
tion infrastructures (federations) is seen as a means for improving the monitor-
ing and use of a service provider’s resources. However, federations are com-
prised of independent management domains with varying scopes of control and
data ownership. The focus of this paper is on the autonomic management of
federated identity providers by service providers located in other domains,
when the identity providers have been diagnosed as the source of abuse. In par-
ticular, we describe how an autonomic controller, external to the domain of the
identity provider, exercises control over the issuing of privilege attributes. The
paper presents a conceptual design and implementation of an effector for an
identity provider that is capable of enabling cross-domain autonomic manage-
ment. The implementation of an effector for a SimpleSAMLphp identity pro-
vider is evaluated by demonstrating how an autonomic controller, together with
the effector, is capable of responding to malicious abuse.

Keywords. identity management, self-adaptive authorization, federated au-
thorization, computing security, autonomic computing

1 Introduction

Autonomic computing is fast becoming a means of improving traditional methods for
repairing, managing and evolving systems in a plethora of application domains [1].
One particular interest within autonomic computing is solutions that enable auto-
nomic management of entities within complex systems, such as the autonomic man-
agement of federated authorization infrastructures (federations). Federations can be
represented as a network of identity providers (IdPs) that identify and authenticate
subjects (users) in order to facilitate their access to remote service providers’ (SPs)
resources.

One aspect of managing federated authorization infrastructures is how to respond
to subjects whose interactions and usage of resources becomes abusive, or malicious,
whilst being within the bounds of their access privileges. For example, in the case of
Wikileaks, an army intelligence officer allegedly accessed (then subsequently leaked)
hundreds of thousands of classified U.S. Department of Defence cables [2]. Since
each individual access was granted by the SP’s access control system, it did not detect
any abuse. Had it done so, and the system had been federated, then the SP would have

faced a dilemma, since the user’s privilege attributes would have been assigned by a
trusted IdP, and not by itself. The SP consequently loses some control over exactly
who the subjects are and how they are authorised. It is a challenging task for human
administrators to monitor, and respond to these potential malicious events today. They
may only resolve these by either 1) removing the trust they have placed in the IdP, 2)
by personally requesting the IdP to limit the offending subjects’ privilege attributes,
or 3) by stopping all accesses by anyone with these privilege attributes (unless they
can uniquely identify the particular user, which is not always the case in federated
systems). This is clearly time consuming and unsatisfactory.

Previous work [3] identified the need for autonomic management of (federated) au-
thorization infrastructures, and described the Self-Adaptive Authorization Framework
(SAAF). SAAF analyses subject behaviour via subject usage of authorization services
(i.e., from authorization decisions). It considers various adaptation strategies against
the IdPs’ and SP’s components within federations. There are several challenges when
considering the autonomic management of IdPs. Whilst SPs own the resources where
the malicious behaviour is identified, they do not own the subject’s privilege attrib-
utes that confer access. These belong to the IdPs. Yet SPs are required to limit these
privileges in order to prevent further malicious events within their own domain. As-
suming a SP deploys an autonomic controller, the controller is normally restricted in
its operation to the SP’s domain whilst the IdP is outside this domain. Therefore, ad-
aptation strategies can only be executed on the IdP with its permission. Without this,
the autonomic controller will need to resort to high consequence adaptations within its
own domain (such as removing all trust in the IdP). Increasing the likelihood that an
IdP will permit the requested adaptations requires a secure and configurable solution,
in which the IdP maintains ownership of its data, and can act on adaptation requests
through varying means, which it ultimately controls.

The contribution of this paper is to define and implement the enabling concepts of
automated and semi-automated management of subjects’ privilege attributes within
IdP domains, by SP domains. We describe the enabling solution as an effector, to be
deployed within an IdP’s domain. An implementation of the effector is deployed as
part of an extended SimpleSAMLphp [4] IdP. An instance of SAAF, the autonomic
controller, is deployed as part of a SimpleSAMLphp SP. We show that the perform-
ance of this system is good.

The rest of this paper is structured as follows. In Section 2, we review background
and related work. In Section 3 we describe a conceptual design to the problem area. In
Section 4 we detail an implementation of the conceptual design. Section 5 describes
the experimental results. Finally, Section 6 concludes by summarising the work done
so far, and indicating future directions of research.

2 Background and Related Work

This section details a brief review of background and current work, which motivates
this research, within the areas of authorization infrastructures, identity management,
and autonomic computing.

2.1 Federated Authorization Infrastructures

Federated authorization infrastructures (federations) refer to a collection of distributed
services and assets (such as privilege attributes and authorization policies) that enable
the sharing and protection of organisational resources, across organisational domains
[5]. Organisations, known as SPs, share their resources with users authenticated by
trusted third party organisations, known as IdPs. Authorization is given in confor-
mance to an authorization model, such as the Attribute Based Access Control
(ABAC) model [6]. ABAC authorization policies state the permissions (actions ex-
ecutable against a resource) assigned to various attribute types and values, which the
IdPs are required to store and provide on behalf of their subjects.

There are various technologies that exist to enable federations. X.509 [7] defines a
distributed privilege management infrastructure built with attribute certificates, upon
which SAML attribute assertions [8] were modelled. Shibboleth [9] uses the SAML
standard to protect web services over a network, requiring users accessing Shibboleth
protected resources to authenticate against their IdP in order for the latter to provide
attribute assertions to the former. SimpleSAMLphp [4] is an alternative implementa-
tion of the same SAML standard. PERMIS [10] was originally an implementation of
the X.509 privilege management infrastructure, but was subsequently enhanced to
support SAML attribute assertions as well. OpenID Connect [11] and IETF Abfab
[12] are two of the latest federation protocols, which are in the final stages of being
standardised.

2.2 Self-Adaptation and Authorization

The Self-Adaptive Authorization Framework (SAAF) [3] is a solution for improving
the monitoring and regulation of resource usage within federations, through auto-
nomic management. SAAF adapts authorization assets (i.e., privilege attributes and
authorization policies) in response to identifying malicious/abusive behaviour. Mali-
cious behaviour is identified by the monitoring of subject usage in conformance to
behaviour rules (defined at deployment) that classify malicious patterns of usage (e.g.,
high rate of access requests). The deployment of SAAF (Figure 1) comprises an auto-
nomic controller, owned by a SP, monitoring the use of its authorization services in
relation to its protected resources. This is achieved through a feedback control loop
[13], adapting authorization assets to further prevent or mitigate malicious behaviour.

Fig. 1. Autonomic management in federated authorization infrastructures

In the case of adapting SP assets (authorization policies), the SAAF autonomic con-
troller is trusted by the SP to carry out the necessary adaptations, implying strict con-
trol. However, a critical adaptation within SAAF is the adaptation of authorization
assets belonging to IdPs where control is restricted (loose control).

2.3 Related Work

To the best of our knowledge no other works explore the role of autonomic control-
lers across different management domains, in particular, within the area of federated
identity management. However, similar works exist which explore the autonomic
management of complex systems. For example, an autonomic management frame-
work [14] for web services describes autonomic controllers deployed at the point of
service, enabling services to identify and resolve their own management problems.
Our work differs in that autonomic controllers are not applicable for all types of ser-
vices within a federated authorization infrastructure, as malicious behaviour identified
by SPs cannot be identified by the source (IdPs). This requires external autonomic
controllers to operate across management domains. Other papers explore the role of
autonomic management and cooperation between differing services within a network
[15], whereby trust and reputation is relied upon to increase the favourability of coop-
eration (in our case, adaptation). In comparison, our work provides a platform for
autonomic management in which trust already exists for issuing of privilege attrib-
utes, as a fundamental component of federations.

3 Managing Identity Providers

This section details the conceptual design for enabling the autonomic management of
identity providers.

3.1 Conceptual Design

The ability to manage IdPs relies specifically on the trust that an IdP has in the (auto-
nomic controller of the) requesting SP. For example, a SP identifies malicious/abusive
activity associated with a subject belonging to an IdP. The SP might request the IdP to
remove the subject’s identity attribute(s) which grant the subject access rights at the
SP. However, these identity attributes may give the subject access rights at many SPs,
and not only at the abused SP. In the latter case the IdP might easily decide to grant
the removal request. In the former case the decision is more difficult and hinges par-
tially on whether the IdP is more concerned about upsetting its subject or the many
SPs that it has trust relationships with (and which the subject might similarly be abus-
ing). If the request is refused the SP is left with several options:

- allow the malicious activity to continue (for example, when the alternative
options have a greater cost when compared to the malicious activity), or

- ask the IdP to alter its attribute release / issuing policy so that it does not is-
sue attribute assertions for this subject, or

- remove access rights from this specific subject (challenging, as it depends on
how subjects are identified, i.e., through persistent or transient IDs) or

- remove access rights from all subjects who share the same set of identity at-
tributes with the abusive subject, or

- remove all trust from this particular IdP (for example, the IdP has refused
numerous adaptation requests and the abusive behaviour continues).

To avoid the last option being taken, it is in an IdP’s interest to comply with re-
quests for management changes in relation to either its attribute release policy or one
of its subject’s identity attributes, otherwise SPs may associate too much risk in using
the IdP. It is for these complex reasons that we have defined the autonomic manage-
ment to be about the IdP’s output i.e., its assertions about a subject’s privilege attrib-
utes, so that it is independent of the actual internal mechanisms employed by the IdP
to achieve this. Autonomic controllers only depend on the final outcome, which is to
control the privilege attributes that the IdP will assert for a particular subject in the
future. The IdP therefore remains in control of the corrective action that is to be taken,
and deciding how to achieve the desired objective. We therefore propose the follow-
ing two definitions:

Definition 1. We define the automated management of a subject’s privilege attrib-
ute assertions within a federated identity management infrastructure as: the ability for
an autonomic controller, situated in a SP’s domain, to issue adaptations to an IdP’s
domain in order to immediately control the privilege attribute assertions that the IdP
will issue for that subject when it subsequently requests access to the SP’s resources.

Definition 2. We define the semi-automated management of a subject’s privilege
attribute assertions within a federated identity management infrastructure as: a variant
of definition 1, whereby the IdP’s domain queues adaptations for a human controller
to review, before execution.

Fig. 2. Conceptual design

Figure 2 details the conceptual components of a managed IdP, which are required
both to provide information to the autonomic controller (within the domain of a SP),
and to control and enable it to request changes to a subject’s asserted privilege attrib-
utes. The effector is the enabler for adaptations concerning an IdP. The authorization
service at the IdP authorizes the autonomic controller, via the effector, to change ei-
ther the issuing policy (which controls the subject’s attribute assertions) or the attrib-
ute repository (which holds the subject’s attributes). The audit log provides the effec-
tor with mappings between the local IDs of subjects and the IDs presented to the SP
in the security assertions. The authorization services at the SP utilise the subject’s

security assertions provided by the IdP’s authenticating and issuing services. The
autonomic controller requests adaptations against the IdP’s effector, and receives state
changes (i.e., subject no longer has privilege attribute ‘x’), to confirm adaptations.

3.2 Identity Provider

We assume an IdP is capable of authenticating a user as being one of its subjects, and
of providing attribute assertions about an authenticated subject to SPs. The IdP is
capable of utilising supporting technologies that facilitate the storage and access of
subject credentials/privilege attributes, for example, the Lightweight Directory Access
Protocol (LDAP). These privilege attributes are assumed to be cryptographically se-
cured and provided to trusted SPs as security assertions, following a standard proto-
col, such as SAML [8]. We also assume IdPs are able to log and audit security asser-
tion assignments, as well as the authentications made through the IdP authentication
services and any random, transient or session identifiers that are assigned to the sub-
jects in the security assertions. Without these auditing capabilities, IdPs are unable to
map session usage to actual subjects, in case they need to identify subjects when re-
sponding to notifications of malicious activity.

3.3 Autonomic Controller and Service Provider

The autonomic controller is capable of observing activity within the SP’s resources to
produce a state, specifically in relation to the accessing subjects and the use of subject
privileges. The autonomic controller is able to classify malicious/abusive behaviour as
behaviour rules. Behaviour rules are defined at deployment by sources of authority
within the SP domain, and relevant to the SP’s environment (i.e., academic / govern-
mental). The autonomic controller is able to assess conformance to behaviour rules by
observing subject usage, and respond when abusive behaviour has been identified. We
make the assumption that the responses made by the autonomic controller are neces-
sary, although the method in which abusive behaviour is identified, and the response
chosen, is not covered by this paper. The autonomic controller is placed in the SP
domain, as it is intrinsic to identification of malicious activity attributed through the
subject’s direct actions against the SP.

In the case of managing IdPs, an autonomic controller’s adaptations refer to the
modification of privilege attribute assertions. Each request made by an autonomic
controller specifies an abstract adaptation operation along with enabling information,
such as the persistent ID to which malicious behaviour is attributed, and the privilege
attributes used. Requests are made over a reliable communications protocol and are
idempotent, meaning that the autonomic controller will expect to always get a re-
sponse. The autonomic controller may continue to make the same request (until a
timeout is reached) if a response is not received, without adapting the final state of the
IdP’s system. Upon timeout or a failure response the adaptation is classed as failed.
Request-responses may be synchronous or asynchronous. Synchronous communica-
tions are used to implement the automated management of a subject’s attribute asser-

tions, whereas asynchronous communications are used to implement semi-automated
management.

3.4 Identity Provider Effector

The IdP’s effector is under the full control of the IdP administrator. He/she configures
it to process adaptations requested by a SP’s autonomic controller, either synchro-
nously, or asynchronously. Communication flows between the IdP’s effector and IdP
software are made internally and rely on a host’s operating system to ensure security.
Communication between an autonomic controller and an IdP’s effector are executed
via secure communication, such as TLS/SSL, and require mutual authentication.

The effector requires access to issuing policies, attribute repositories and audit
logs, within the IdP. Access to issuing policies is required in order to adapt the policy
controlling the subjects’ privilege attributes asserted by the IdP (if allowed by the
administrator). Access to logs is required to map between an identifier (persistent or
transient) that the SP has received, and the internal identifier of the subject. Access to
attribute repositories is needed to modify a subject’s privilege attributes (if allowed).

The effector supports a set of abstract adaptations that are necessary when manag-
ing an IdP. It is expected to translate these abstract adaptations into concrete adap-
tions that are supported by the underlying technology. For example, ‘remove subject’s
privilege attribute assertion’ may be translated into the relevant LDAP modify com-
mand in order to be executed against the LDAP directory, or into the appropriate
Shibboleth attribute release policy to stop the SAML attribute assertion being created.
The list of executable adaptations is as follows, and these are referred to as the effec-
tor operations: 1) Remove privilege attribute assertion from all subjects, 2) Remove
privilege attribute assertion from identified subject, 3) Add privilege attribute asser-
tion for all subjects, and 4) Add privilege attribute assertion for identified subject.

A consequence of defining such a set of abstract operations is that it allows the IdP
to utilise an authorization service to determine which operations to allow and which to
deny, and then to determine how to implement the allowed ones. The addition of priv-
ilege attribute assertions is provided in order to specify a subject with reduced privi-
leges (as a new attribute), where attributes exist within a hierarchy. For example, a
Supervisor attribute inherits from an Employee attribute.

4 Implementation

This section describes the implementation of the effector for a SimpleSAMLphp [4]
IdP, and shows how it can be integrated with an autonomic controller.

4.1 Federated Authorization Infrastructure

The effector together with a single SP and a single IdP are implemented as a SAML
compliant federation. SimpleSAMLphp is used as the unifying technology to enable
communication between the two providers. This is a basic federated authorization

infrastructure to demonstrate the effector, however the effector could potentially be
used in setups with multiple services and IdPs.

The IdP is implemented on a single host machine, whereby an instance of Simple-
SAMLphp is installed and configured to provide IdP services. An open LDAP server
is installed to store subject privilege attributes and authentication information. Finally,
an implementation of a SimpleSAMLphp IdP effector is installed, compliant with our
conceptual design, to enable cross-domain management. The effector makes use of
open LDAP’s access control lists in order to manage the extent of adaptations a client
is permitted to request.

The SP is implemented across two host machines, one to host the SP’s resources
(resource host), and one to host an autonomic controller and authorization services
(authorization host). The authorization host deploys an implementation of SAAF [3]
and an instance of PERMIS [10], which is used to protect the SP’s resources deployed
on the resource host. PERMIS is capable of utilising ABAC authorization policies to
provide the validation of SAML attribute assertions issued by IdPs, and access control
decisions to the resource host.

4.2 Extending SimpleSAMLphp

To facilitate operations by the IdP’s effector, we extended the logging capabilities of
SimpleSAMLphp in order to always ensure the correct retrieval of a subject’s LDAP
distinguished (unique) name. SimpleSAMLphp stores its log information in a rela-
tional database (SQLite). In its original configuration, SimpleSAMLphp was only
capable of mapping persistent IDs to subject attribute values. Additional information,
such as attribute type, LDAP host, and LDAP search base, is needed in order to locate
the actual subjects’ LDAP entries for both transient and persistent IDs. Whilst some
of this information e.g. LDAP host names, is available in the SimpleSAMLphp con-
figuration file, it is not persistent to configuration changes. For this reason we decided
to record all this additional information in the log DB, so that the effector is always
able to identify the abusive subject’s distinguished name.

4.3 SimpleSAMLphp Effector

The SimpleSAMLphp effector, shown in Figure 3, implements a subset of the effector
component shown in Figure 2. It is a PHP web service hosted alongside the Simple-
SAMLphp IdP service. It has access to the log database stored within the Simple-
SAMLphp directory, which enables it to map between persistent and transient IDs and
a subject’s distinguished name. Web service clients, such as the SAAF controller, can
access the effector providing they have been issued with a trusted client X.509 certifi-
cate. Mutual SSL/TLS authentication is required and the client’s certificate distin-
guished name is used to identify the requesting client.

Although the effector component conforms to the conceptual design described in
Section 3, it is somewhat restricted due to the limited capabilities of Simple-
SAMLphp. SimpleSAMLphp relies upon an attribute repository, such as LDAP,
along with an attribute release / issuing policy which is represented by a PHP configu-

ration file. However, the attribute release policy is constrained to stating only which
attributes can be released to which SPs, regardless of the individual subject. As a
result the effector adapts subject attributes held in the LDAP repository in order to
achieve the per subject granularity. Modifying the privilege attribute assertions for all
subjects is implemented by changing the SP’s PERMIS credential validation policy
rather than the SimpleSAMLphp attribute release policy. However, if the SP’s au-
thorization services do not provide credential validation policies, then adaptation of
attribute release policies will be needed.

When operating synchronously, the effector utilises the LDAP access control lists
in order to authorize the subject level adaptation requests, notifying requesting clients
of failure in case the client is unauthorized. When operating asynchronously, meaning
manual review is required, the effector queues requests and notifies administrators via
email when new requests are received. Human administrators then review the queued
requests before allowing the effector to execute an adaptation and inform the client of
success or failure. The effector is initialised once it receives a SOAP message request
from a client. From here SOAP requests are processed in the following manner: 1)
mutually authenticate the requesting client over TLS and obtain the requestor’s dis-
tinguished name (DN) from its certificate, 2) verify the requested operation is valid,
3) retrieve the target subject’s unique attribute mapping from the persistent/transient
ID stored in the SimpleSAMLphp audit log database, 4) retrieve the subjects’ DN(s)
using the relevant LDAP host name and search base, 5) translate the requested opera-
tion into LDAP executable operations, 6) bind the requestor’s DN to the relevant
LDAP server, 7) execute the update operation against LDAP, providing the access
control list allows it, 8) respond to the client with confirmation of the state changes.

Fig. 3. Effector for SimpleSAMLphp IdP

5 Experiments

In this section, we discuss the deployment of the SimpleSAMLphp IdP and its effec-
tor in relation to a case of abuse identified with a SAAF controller.

5.1 Adaptation Scenario

The SimpleSAMLphp IdP is configured to issue persistent IDs with the release of
privilege attributes for authenticated subjects. An LDAP directory is populated with

subject authentication and privilege attributes. The effector is deployed, configured to
run synchronously, and rely on an LDAP access control list to restrict the actions of a
SAAF autonomic controller.

The SP is configured to host a payroll web application that utilises a policy en-
forcement point (PEP). The PEP requires subjects to 1) authenticate against the sub-
ject’s IdP, 2) obtain the subject’s releasable privilege attributes in the form of a
SAML assertion (via SimpleSAMLphp), and 3) utilise the SP’s authorization services
to provide an authorization decision. PERMIS is deployed with an authorization pol-
icy that states the IdP is trusted to assign the privilege attribute ‘permis-
Role=employee’ to its subjects. This privilege attribute can be used to execute the
permission of ‘get employee payslip’ on the payroll web application. The SAAF au-
tonomic controller is deployed with a simple behaviour policy stating that no single
subject belonging to the IdP may request access to any of the SP’s resources, greater
than 10 requests per minute. This is to stop automated attacks. SAAF profiles usage
based on subjects’ persistent IDs associated with the federated access requests.
Should this rule be broken SAAF identifies the subject as committing abuse and can
respond through various adaptation strategies. The best adaptation strategy is chosen
based on a weighted decision problem solving algorithm, for example, considering the
cost of realising the adaptation strategy against the cost of allowing abuse to continue.

In this scenario, a subject registered with the IdP, requests access to ‘get employee
payslip’ more than 10 times within a minute interval. Each time the subject requests
access, PERMIS logs the request, detailing the subject’s attributes from the subject’s
SAML assertion, the subject’s persistent ID, and access decision given. The SAAF
autonomic controller builds up the subject’s pattern of access based on these logged
events, checking conformance access against its behaviour policy. SAAF identifies
that the stated behaviour rule has been broken, and reacts by requesting the Simple-
SAMLphp effector to prevent the subject from using the privilege attribute of ‘per-
misRole=employee’. The SAAF autonomic controller encapsulates this request in a
SOAP message, which is sent over a mutually authenticated HTTPS connection to the
effector. It contains an operation (remove privilege attribute), the subject’s persistent
ID observed from the subject’s SAML assertions, the SP’s ID to identify where the
persistent ID was used, attribute type (permisRole) and attribute value (employee).

Providing the effector’s response to the client indicates a successful adaptation
(i.e., subject will no longer be issued permisRole=employee), the SAAF controller
assumes the adaptation has been successful. However, if the response indicates an
unsuccessful state, the offending subject is free to continue committing malicious
behaviour. If the subject’s behaviour continues, SAAF may take steps to remove the
trustworthiness of the IdP in question, but this is not addressed here.

5.2 Performance and Load Tests

We have executed four types of load and performance tests. These tests are catego-
rised as T1 – successful adaptation, T2 – invalid operation, T3 – invalid subject map-
ping, and T4 – LDAP error (either not authorized or unable to execute action). Tests
were performed on two virtual machines (Debian 6.0.5 512MB memory hosted on a

2.4Ghz, 3GB memory MS Windows machine), as server and client, where threads on
the client machine were used to depict multiple virtual clients.

We measured the average response times within an interval of one second (reflect-
ing the minimum SAAF autonomic controller adaptation cycle), issuing requests
within a single initial burst until the interval was complete. On average, with the min-
imum load of one client (one SAAF) issuing one request per second, we found per-
formance of T1 requests could be executed in 65ms, T2 in 49ms, T3 in 50ms, and
finally T4 in 62ms. We identified that the maximum load (Figure 4) was reached with
18 clients executing one request within the one-second interval.

In practice we do not expect SAAF to create a high load on this effector, due to the
nature in which it executes adaptation strategies. As more adaptation requests are
made, it is likely to coincide with increased levels of malicious activity, causing the
autonomic controller to resort to high consequence adaptations that are out of scope of
the effector, such as changing its local PERMIS policy.

Fig. 4. Average (mean) response time, with standard error, against number of clients

6 Conclusion

This paper has presented an approach for enabling the autonomic management of
federated identity providers (IdPs) across independent management domains. The
motivation for this work is the fact that service provider (SP) domains can diagnose
IdP domains as the source of malicious abuse. At the conceptual level, the basis of the
proposed approach is the integration of an autonomic controller, positioned in the
domain of a SP, with an effector, positioned in the domain of an IdP. We present the
conceptual design of the effector, whilst satisfying key safeguards such as, ensuring
the IdP remains in complete control of its assets. This effector has been implemented
and evaluated through the deployment of a federated authorization infrastructure,
which incorporates a SimpleSAMLphp IdP. We have shown that an autonomic con-
troller is able to manage, via the effector, an IdP’s ability to assign privilege attributes
to its subjects. Through performance and load testing, we have shown that the IdP’s
effector is capable of operating with multiple autonomic controllers when handling
adaptation requests within an autonomic controller’s minimum adaptation cycle.

In the work described in this paper, it is recognised that the autonomic controller
does not have strict control over the IdP, and relies on the IdP’s goodwill. In order for

control to be more effectively applied, it would be necessary to have a legal service
agreement or similar between the SP and IdP, whereby the IdP agrees to enact the
SP’s adaptation requests. In this way, the sphere of control exercised by the SP’s au-
tonomic controller would extend beyond the domain of the SP with which it is associ-
ated, to that of the IdPs to which the SP is contractually bound. Our future work aims
to explore the requirements of service agreements between SPs and IdPs in order to
ensure control when managing subjects’ access rights between different domains.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. In Computer 36, pp 41--
50 (2003).

2. G. Adams.: Private Memo Exposes US Fears over Wikileaks. In The Independent. Avail-
able at http://www.independent.co.uk/news/world/americas/private-memo-exposes-us-
fears-over-wikileaks-2177041.html (2011).

3. Bailey, C., Chadwick, D.W., de Lemos, R.: Self-Adaptive Authorization Framework for
Policy Based RBAC/ABAC Models. In Proceedings of the 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, pp. 37--44 (2011).

4. SimpleSAMLphp Version 1.9.2. Available at http://simplesamlphp.org/.
5. Chadwick, D.W.: Federated Identity Management. In A. Aldini, G. Barthe, and R. Gorrieri

(Eds.): FOSAD 2008/2009, LNCS 5705, pp. 96--120, (2009).
6. ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 “Security Frameworks for open systems:

Access control framework”.
7. ISO 9594-8/ITU-T Rec. X.509 (2001) The Directory: Public-key and attribute certificate

frameworks.
8. OASIS “Security Assertion Markup Language (SAML) Version 2.0”.
9. Morgan, R. L., Cantor, S., Carmody, S., Hoen, W., Klingenstein, K.: Federated Security:

The Shibboleth Approach. EDUCAUSE Quarterly, (2004).
10. Chadwick, D.W., Zhao, G., Otenko, S., Laborde, R., Su, L., Nguyen, T.A.: PERMIS: A

modular Authorization Infrastructure. In Concurrency and Computation: Practice and Ex-
perience, pp 1341--1357 (2008).

11. Sakimura, N. et al. “OpenID Connect Standard 1.0 - draft 18”. 26 March 2013. Available at
http://openid.net/specs/openid-connect-standard-1_0.html.

12. Howlett, J. et al. “Application Bridging for Federated Access Beyond Web (ABFAB) Ar-
chitecture”. draft-ietf-abfab-arch-05.txt, 25 Feb, 2013.

13. Brun, Y., Serugendo, G.M., Gacek, C., Giese, H., Keinie, H., Litoiu, M., Muller, H., Peeze,
M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops. In Software
Engineering for Self-Adaptive Systems, pp 48--70 (2009).

14. Cheng, Y., Leon-Garcia, A., Foster, I.: Toward an Autonomic Service Management
Framework: A Holistic Vision of SOA, AON, and Autonomic Computing. In IEEE Com-
munications Magazine 46, Issue 5, pp 138--146 (2008).

15. Psaier, H., Juszczyk, L., Skopik, F., Schall, D., Dustdar, S.: Runtime Behaviour Monitoring
and Self-Adaptation in Service-Oriented Systems. In Proceedings of the 2010 Fourth IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, pp 164--173
(2010).

