
HAL Id: hal-01485973
https://inria.hal.science/hal-01485973

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Generic Program Slicing Technique Based on
Language Definitions

Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

To cite this version:
Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae. A Generic Program Slicing Technique
Based on Language Definitions. 21th InternationalWorkshop on Algebraic Development Techniques
(WADT), Jun 2012, Salamanca, Spain. pp.248-264, �10.1007/978-3-642-37635-1_15�. �hal-01485973�

https://inria.hal.science/hal-01485973
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Generic Program Slicing Technique based on
Language Definitions?

Adrián Riesco1, Irina Măriuca Asăvoae2, Mihail Asăvoae2

1 Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es

2 Alexandru Ioan Cuza University, Romania
{mariuca.asavoae, mihail.asavoae}@info.uiac.ro

Abstract. A formal executable semantics of a programming language
has the necessary information to develop program debugging and rea-
soning techniques. In this paper we choose such a particular technique
called program slicing and we introduce a generic algorithm which ex-
tracts a set of side-effects inducing constructs, directly from the formal
executable semantics of a programming language. These constructs are
further used to infer program slices, for given programs and specified
slicing criteria. Our proposed approach improves on the parametrization
of the language tools development because changes in the formal seman-
tics are automatically carried out in the slicing procedure. We use the
rewriting logic and the Maude system to implement a prototype and to
test our technique.

Keywords: slicing, semantics, Maude, debugging

1 Introduction

The intrinsic complexity of a modern software system imposes the need for spe-
cialized techniques and tool support, both targeting the system design and analy-
sis aspects. It is often the case that these two aspects of the software development
are inter-dependent. On the one hand, abstraction techniques are widely used
solutions to reduce, in a systematic way, the size of the system under considera-
tion. However this abstraction-based simplification process is usually dependent
on quality and performance-driven refinements which, in turn, would benefit
from tool support. On the other hand, the development of useful tool support
requires sound techniques to ensure the correctness of the produced results. One
possible solution to integrate techniques and tools development is to use a for-
mal and executable framework such as rewriting logic [12]. Thus, a rewriting
logic general methodology for design and analysis of complex software systems
could and should rely on a formal executable programming language semantics
to ground the development of both abstractions and tools.

? Research supported by MICINN Spanish project DESAFIOS10 (TIN2009-14599-
C03-01) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

2 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

A formal executable semantics of programming languages provides a rigorous
mechanism to execute programs and in extenso, to implicitly or explicitly have
access to all the program executions. The rewriting logic implementation—the
Maude system [6]—comes with reachability and fully-fledged LTL model check-
ing tool support. Thus, the notion of execution could be extended from program
execution to analysis tool execution (over the same particular program). In these
two settings, it is often important to simplify the executions with respect to cer-
tain criteria. One such simplification is called slicing [21] and, when applied on
programs, it defines safe program fragments with respect to a specified set of
variables.

In this paper we investigate, from a semantics-based perspective, the inter-
dependent relationship between the program slicing general technique and its
afferent tool—the program slicer. Modifications (i.e. extensions or abstractions)
at the level of the programming language, and which are carried out at the level
of the program, should be automatically reflected in the program slicing tool
support. Therefore, we propose a static technique for program slicing which is
based on a meta-level analysis of the formal executable semantics of program-
ming languages. Our program slicing builds on the formal executable semantics
of the language of interest, given as a rewriting logic theory, and on the source
program.

Our procedure for program slicing consists of the following two steps: (1) a
generic analysis of the formal executable semantics, followed by (2) a data de-
pendency analysis of the input program. Step (1) is a fixpoint computation of the
set of the smallest language constructs that may issue side-effects. Step (2) uses
the resulting set from step (1) to extract safe program slices based on a specified
set of variables of interest. Though our slicing technique is general, we exemplify
it on the Maude specification of the classical WHILE language, named WhileL,
augmented with a side-effect assignment and read/write statements. Next we
present a quick, high-level overview of the semantics-based slicing methodology,
grounded on the design of a formal executable semantics.

We use the standard approach to specify the WhileL programming language
in rewriting logic. First, we define the (abstract) syntax, followed by the language
configuration (i.e. the necessary semantic entities to define the behavior) and the
language semantics (i.e. equations and rewrite rules).

We motivate our program slicing approach, starting with an alternative view
on the language semantics. We elaborate on both structural and functional as-
pects of this view. Structurally, the formal definition of the WhileL language
consists of three layers. At the top level there are the pure syntactic language
constructs (i.e. the syntax), at the bottom there is the language state, while the
middle layer contains the semantics equations and rewrite rules. This arrange-
ment is important for the functionality of the definition. When we execute a
program through these layers, its statements are decomposed into smaller syn-
tactic constructs (i.e. found at the top layer) which, through transformations in
the middle layer could result into state updates. In this way, a program execu-
tion establishes connections between the syntactic constructs and state updates,

A Generic Program Slicing Technique based on Language Definitions 3

in other words which constructs yield side-effects. Step (1) of our program slic-
ing method covers these meta-executions of the semantics to identify the set of
syntactic constructs which results in state updates. This coverage employs uni-
fication [4] and an adaptation of the backward chaining technique [17]. During
the language semantics analysis, the algorithm unfolds the middle layer (i.e. the
semantics rewrite rules) into a special tree, applying labels to the visited nodes.
This label-based classification is used to identify the set of side-effect constructs
and to prune the unfolding tree. Step (2) takes the term representation of the
input program together with the results from the previous step, represented as
subterms, and does program slicing through term slicing.

Let us consider, throughout this paper, the WhileL program, say P , in Fig. 1
(left) on which we exemplify a standard slicing. We start with P and a set of
variables of interest V . For example, V is {p} in Fig. 1 (middle) and V is {s} in
the same figure (right). We identify and label the contexts containing variables
of interest and add into the set V the other variables appearing in the current
context. We run this step until V stabilizes. At the end, the program slice is
represented by the skeleton term containing all the labeled contexts. Computing
the slice of P with respect to variable p, in Fig. 1 (middle), identifies in the
first iteration, the two assignment instructions to p. The second assignment
adds the variable i to the V and the second iteration of the algorithm identifies
the three input/output instructions. A third iteration considers the variable j,
which contributes to the partially computed slice with its corresponding read
instruction.

read i ; read j ; read i ; read j ; read i ; read j ;

s := 0 ; p := 1 ; p := 1 ; s := 0 ;

while not (i == 0) do {

write (i - j) ; write (i - j) ; write (i - j) ;

s := s + i ; s := s + i ;

p := p * i ; p := p * i ;

read i ; read i ; read i ;

}

Fig. 1. A WhileL program (left) and program slices, w.r.t. variable p (middle) and
w.r.t. variable s (right)

The rewriting logic definitions of programming languages support program
executability, and at the same time, provide all the necessary information to
build analysis tools. In this paper we propose a generic algorithm based on a
meta-level analysis of the language semantics, which extracts useful information
(i.e. side-effect constructs) for the program slicing procedure. The actual program
slice computation is through term slicing.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 introduces Maude and presents an example that will be used

4 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

throughout the rest of the paper. Section 4 describes the slicing algorithm and
the main theoretical results, while Section 5 shows our Maude prototype of
the technique and outlines its implementation. Finally, Section 6 concludes and
presents some subjects of future work.

2 Related Work

Program slicing is a general and well-founded technique that has a wide range
of applications in program parallelization [18], debugging [1,16], testing [9] and
analysis [11,15]. It was introduced in [21] where, for a given program, is used to
compute executable fragments of programs, statically (i.e. without taking into
consideration the program input). Strictly from the computation perspective of
program slices, the work in [21] produces backward slices, while our approach
applies the set of side-effect language constructs, obtained from the formal se-
mantics, to produce forward slices. Informally, this kind of slices, introduced
in [10], represents program fragments which are affected by a particular pro-
gram statement, with respect to a set of variables of interest. With respect to
the general problem of program slicing, we refer the reader to the work in [19]
for a comprehensive survey on program slicing techniques, with an emphasis on
the distinctions between forward and backward slicing approaches and between
static and dynamic slicing methods.

Our proposed approach relies on a formal executable semantics definition,
specified as a rewriting logic theory, over which we apply semantics-based rea-
soning techniques to extract side-effect language constructs. Next we elaborate
on the works in [8,2,7], all of which use formal language definitions as support
for developing program slicing methods.

The approach in [8] applies slicing to languages specified as unconditional
term rewriting systems. It relates the dynamic dependences tracking with reduc-
tion sequences and, applying successive transformations on the original language
semantics, it gathers the necessary dependency relations via rewriting. The re-
sulting slice is defined as a context contained in the initial term representation
of the program, a context being a subset of connected subterms. Our approach
handles the formal semantics at a meta-level, without executing its rewrite rules.

The recent work in [2] proposes a first slicing technique of rewriting logic com-
putations. It takes as input an execution trace—the result of executing Maude
model checker tools—and computes dependency relations using a backward trac-
ing mechanism. Both this work and its sequent extension to conditional term
rewriting systems, in [3], perform dynamic slicing by executing the semantics
for an initial given state. In comparison, we propose a static approach that is
centered around the rewriting logic theory of the language definition. Moreover,
our main target application is not counterexamples or execution traces of model
checkers, but programs executed by the particular semantics.

Our two step slicing algorithm resembles the approach in [7], where an al-
gorithm mechanically extracts slices from an intermediate representation of the
language semantics definition. The algorithm relies on a well-defined transforma-

A Generic Program Slicing Technique based on Language Definitions 5

tion between a programming language semantics and this common representa-
tion. This transformation is non-trivial and language dependent. The approach
in [7] also generalizes the notions of static and dynamic slices to that of con-
strained slices. What we propose is to eliminate the translation step to the
intermediate representation and to work directly on the language semantics.

Finally, the work in [14] presents an approach to generate test cases similar to
the one presented here in the sense that both use the semantics of programming
languages formally specified to extract information about programs written in
this languages. In this case, the semantic rules are used to instantiate the state
of the variables used by the given program by using narrowing; in this way, it
is possible to compute the values of the variables required to traverse all the
statements in the program, the so called coverage.

3 Preliminaries

We present in this section the Maude system [6] by means of an example.

3.1 Maude

Maude modules are executable rewriting logic specifications. Rewriting logic [13]
is a logic of change very suitable for the specification of concurrent systems.
It is parameterized by an underlying equational logic, for which Maude uses
membership equational logic (MEL) [5], which, in addition to equations, allows
one to state membership axioms characterizing the elements of a sort. Rewriting
logic extends MEL by adding rewrite rules.

Maude functional modules [6, Chap. 4], introduced with syntax fmod ...
endfm, are executable membership equational specifications that allow the def-
inition of sorts (by means of keyword sort(s)); subsort relations between sorts
(subsort); operators (op) for building values of these sorts, giving the sorts of
their arguments and result, and which may have attributes such as being asso-
ciative (assoc) or commutative (comm), for example; memberships (mb) asserting
that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (cmb and ceq). Maude system modules [6,
Chap. 6], introduced with syntax mod ... endm, are executable rewrite theo-
ries. A system module can contain all the declarations of a functional module
and, in addition, declarations for rules (rl) and conditional rules (crl).

We present Maude syntax for functional modules specifying the natural num-
bers in the MY-NAT module. It defines the sorts NzNat and Nat, stating by means
of a subsort declaration that any term with sort NzNat also has sort Nat:

fmod MY-NAT is

sort NzNat Nat . subsort NzNat < Nat .

The constructors for terms of these sorts, the constant 0 and the successor
operator, are defined as follows:

op 0 : -> Nat [ctor] . op s : Nat -> NzNat [ctor] .

6 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

We can also define addition between natural numbers. First, we define the
operator _+_, where the underscores are placeholders and that has attributes
stating that it is commutative and associative. Then we specify its behavior by
means of equations. These equations can be conditional, as shown in add1, where
we check that the first argument is 0, and can use patterns on the left-hand side,
as shown in add2:

vars N M : Nat .

op _+_ : Nat Nat -> Nat [comm assoc] .

ceq [add1] : N + M = N if N == 0 .

eq [add2] : s(N) + M = s(N + M) .

endfm

The syntax for system modules is presented together with the semantics of
the WhileL language, that we will use for our slicing example. For this semantics,
assume we have defined in EVALUATION-EXP-EVAL the syntax of a language with
the empty instruction skip, assignment, assignment with addition (_+=_), incre-
ment operator (_++), If statement, While loop, composition of instructions, and
Read and Write functions via a read/write buffer, all of them of sort Com;3 some
simple operations over expressions and Boolean expressions such as addition and
equality; and a state, of sort ST, mapping variables to values. Using this module
we specify the evaluation semantics of this language in EVALUATION-SEMANTICS,
that first defines a Program as a triple of a term of sort Com, a state for the
variables, and a state for the read/write buffer:

(mod EVALUATION-SEMANTICS is

pr EVALUATION-EXP-EVAL .

op <_,_,_> : Com ENV RWBUF -> Statement .

The rule AsR is in charge of the semantics of the assignment. It first evaluates
the assigned expression (note that we use another operator <_,_> to evaluate
expressions which does not require the read/write buffer) obtaining its value v
and a new state for variables st’, and then updates this new state by introducing
the new value for the variable:

crl [AsR] : < X := e, st, rwb > => < skip, st’[v / X], rwb >

if < e, st > => < v, st’ > .

This update is in charge of the upd equation, that removes the variable from
the state (if the variable is not in the state it remains unchanged) with the
remove function and then introduces the new value:

eq [upd] : ro [V / X] = remove(ro, X) X = V .

The rule Inc1 also uses this update operator to increase the value of X in
the state. The new value is computed by first obtaining the value v of X and
then adding 1 using the auxiliary Ap function, that applies the given operation
(addition in this case) to the values:
3 The assignment with addition, the increment operator, and the read/write buffer

extend the specification of the language given in [20].

A Generic Program Slicing Technique based on Language Definitions 7

crl [Inc1] : < X ++, st, rwb > => < skip, st[Ap(+., v, 1) / X], rwb >

if < X, st > => < v, st > .

Similarly, the rule SdE describes the behavior of the += assignment. It first
computes the value of X in the given state to obtain the value v and then evaluates
the expression e to obtain its final value v’; these values are added with Ap:

crl [SdE] : < X += e, st, rwb > => < skip, st’’[Ap(+.,v,v’) / X], rwb >

if < X, st > => < v, st’ > /\

< e, st’ > => < v’, st’’ > .

The rule WriteR introduces a new value in the read/write buffer after eval-
uating it:

crl [WriteR] : < Write e, st, rwb > => < skip, st’, insert(v, rwb) >

if < e, st > => < v, st’ > .

where insert just introduces the value at the end of the buffer. Reading is
performed by using the rule ReadR1. It tries to extract the next value from the
buffer and, if it is not the err value, updates the state with it:

crl [ReadR1] : < Read X, st, rwb > => < skip, st[v / X], rwb’ >

if (v, rwb’) := extract(rwb) /\

v =/= err .

4 Semantics Based Program Slicing

In this section we discuss the semantics-based program slicing. This approach
consists of two steps, namely the language semantics specification analysis and
the program slicing as term rewriting. We introduce the algorithm for the se-
mantics based analysis and present its execution on the WhileL language case
study. We end this section with the results of the second step of the program
slicing algorithm, applied on the example program in Fig.1 (left).

We consider S a specification of a program language semantics given in
rewriting logic where we make the distinction between the languages syntax
and the program state, via their different sorts in S. For example in the seman-
tics of the WhileL language described in Section 3 the language syntax is given
by the sort Com, while the program state is formed by sorts ENV and RWBUF.

We consider the following (standard) transformations over S. First, all equa-
tions are directed from left to right such that they become rules. Also, matching
in conditions v := e become e⇒ v. Then, we assume a unique label R identifying
each rule as follows:

[R] : l⇒ r if l1 ⇒ r1 ∧ . . . ∧ ln ⇒ rn

with n ∈ N. Finally, we transform any rule [R] into a labeled Horn clause:

[R] l :− l1; . . . ; ln; r.

8 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

We denote S̄ the specification S after these transformations. Note that S̄ does
not contain the ri terms of the rules in S. We comment on this later when
describing the first slicing step algorithm.

Let t be a term with variables. We use the notation R :: t for “an instance
of t on non-variable position can be reduced by the rule R”, i.e., exists an unifier
θ and a subterm s of t such that sθ = lθ.

Definition 1. A hypernode for a valid term t, denoted as ∀R ∈ S̄, R :: t , is a

list R1 → . . .→ Rm of distinct rules in S̄, with m ∈ N, such that Ri :: t for
all 1 ≤ i ≤ m. We define an inspection tree iT as a tree of hypernodes where
the children of a hypernode R1 → . . .→ Rm are defined as:

children(R1 → . . .→ Rm) = {successors(Ri) | 1 ≤ i ≤ m}

where the successors of a Horn clause [R] l :− t1; . . . ; tn. are defined as:

successors(R) = ∀R1 ∈ S̄, R1 :: t1 −→ . . . −→ ∀Rn ∈ S̄, Rn :: tn

Example 1. We give next a generic example of an inspection tree, considering
R1, . . . , R7 as all rule labels in S̄.

R1 → R2

R3 → R4 −→ R5 R6 → R7

The shape of this tree is induced by the rules R1, . . . , R7 as follows: assume there
exist t and two unifiers θ1 and θ2 such that tθ1 = lR1θ1 and tθ2 = lR2θ2, and that
no other rule in S̄ can reduce t. Hence, ∀R ∈ S̄, R :: t is R1 → R2 . Moreover,
assume that [R1] lR1 :−t1,1; t2,1. and [R2] lR2 :−t1,2. and assume there exist θi,
with 3 ≤ i ≤ 7 such that t1,1θ3 = lR3θ3 and t1,1θ4 = lR4θ4, t2,1θ5 = lR5θ5,
while t1,2θ6 = lR6θ6 and t1,2θ7 = lR7θ7. Hence, the down arrows starting in the
rules R1 and R2 point towards successors(R1) and successors(R2), respectively
(again, under the assumption that no other rules in S̄ can reduce t1,1, t1,2, or

t2,1). Namely, ∀R ∈ S̄, R :: t1,1 is R3 → R4 , ∀R ∈ S̄, R :: t2,1 is R5 , and

∀R ∈ S̄, R :: t1,2 is R6 → R7 . Finally, the tree is completely unfolded under
the assumption that successors(Ri) = ∅, 3 ≤ i ≤ 7.

The algorithm in Fig. 2 computes the set of basic syntactic language con-
structs which may produce side-effects, by inspecting the conditions and the
right-hand side of each rewrite rule in the definition. For this inspection, we rely
on unification [4] and a backward chaining technique [17]. The algorithm unfolds
the semantics rewrite rules into the inspection tree iT such that the final tree
contains a superset of all rules which can be called during a rewrite execution

A Generic Program Slicing Technique based on Language Definitions 9

Input: The language specification S̄, the valid term runPgm(X : LS, Y : PS),
and the set A of side-effect-sources (pre-computed based on PS).

Output: The basic syntactic constructs (non-recursive operators of sort LS)
which induce side effects in the program state (of sorts PS).

maySE :=A; noSE :=∅; rMix :=∅; lBorder :=empty stack;

iT := ∀R ∈ S̄, R :: runPgm(X : LS, Y : PS) ;

lBorder :=insert(select R from ∀R ∈ S̄, R :: runPgm(X : LS, Y : PS));

while lBorder 6= empty stack do

Rcurr :=top(lBorder);

if Rcurr ∈ maySE ∪ noSE

then backtrack(iT , lBorder);

else if Rcurr ∈ lBorder − top(lBorder) or Rcurr ∈ rMix

then rMix+=Rcurr ; backtrack(iT , lBorder);

else if newSuccessors(Rcurr) 6= ∅
then iT +=successors(Rcurr); lBorder :=insert(select R from successors(Rcurr));

else if successors(Rcurr) ∩maySE 6= ∅
then maySE+=Rcurr ; backtrack(iT , lBorder);

else noSE+=Rcurr ; backtrack(iT , lBorder);

od

return {s ∈ LS | s subterm of l, [R] l:−t1; . . . ; tn, R ∈ root(iT) ∩ (maySE − rMix)}

Fig. 2. The algorithm for detecting basic program syntax producing side effects.

“rew rP”, where rP is a ground term with runPgm as top operator. More to the
point, we assume that there exists in S an operator runPgm which is used for
executing programs based on the language semantics specification S. Note that
usually runPgm contains as arguments the program term and the initial pro-
gram state, i.e., runPgm is defined over LS (language syntax) and PS (program
state) sorts. In other words, the inspection tree is an over-approximated result
of a rule reachability problem.

We call t a valid term if its subterms and its variables meet a set of con-
straints Cns w.r.t. the possible ground instances of t. Typically we use a valid
program term, formed only with the language syntax operators from LS, and
valid program state term, formed only with the constructors of the sort PS. Note
that for a valid term t some unifications are refuted, hence some rules are deleted
from ∀R ∈ S̄, R :: t . The root of iT is the hypernode obtained from the input
valid term runPgm(X : LS, Y : PS). The rules in iT ’s hypernodes are either
Labeled or Unlabeled, where Labeled = lBorder ∪maySE ∪noSE ∪ rMix . lBorder
is a stack which maintains the path currently unfolded in the inspection tree.
maySE and noSE are two disjoint sets of rules which cover the already traversed
side of the inspection tree (i.e., the rules in the left half-plane determined by the
lBorder, labeled border, path). The maySE set contains rules which may contain
side-effects, i.e., at least a rewrite starting in an maySE rule will reach the appli-

10 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

cation of a rule which modifies the state of the program. We label as noSE the
rules for which there is no side-effect propagation, hence maySE∩noSE = ∅. The
rMix label is introduced for detecting and pruning recursive rules, i.e., rules that
may (indirectly) call themselves which means that at some point they appear
twice in the lBorder stack.

The backtrack(iT , lBorder) subroutine is an augmented backtracking proce-
dure (that goes up in lBorder as long as it cannot go right via the horizontal
arrows in iT). The augmentation consists in the fact that when backtrack removes
the top of the lBorder stack, it also labels that rule as maySE or noSE. Namely,
a rule is labeled maySE if, when removed from the top of the stack, it contains
at least a successor rule labeled maySE. Otherwise, i.e., when no successor rule
is labeled maySE, the rule is labeled noSE upon removal from the stack. The
labeling in the backtrack subroutine induces the fact that at the end of the algo-
rithm rMix ⊂ maySE ∪ noSE . Also, newSuccessors(R) = children(R)\Labeled .
Finally, the algorithm returns the language syntax subterms of the terms l in
the rules R from iT ’s root that are in maySE but not rMix. In other words, the
result of the algorithm identifies the language syntactic constructs (subterms of
sort LS) that are basic and may produce side-effects, i.e., the rules giving its
semantics in S are non-recursive (not in rMix) and in maySE.

Our algorithm allows label propagation under certain conditions, with a la-
beled node summarizing the information of its corresponding subtree. The results
of the language semantics analysis are used as contexts in the second slicing step
to infer a safe program slice. Note that the termination of the algorithm in Fig. 2
is ensured by the fact that the specification has a finite number of rules, and that
any rule in iT that was already Labeled is not unfolded anymore. Notice also that
the algorithm is independent of the order of the labels in a hypernode. In fact,
we consider the labels as a list just for ease the presentation, but hypernodes
can be just considered sets of labels, since the algorithm relies on the existence
of a rule label generating side effects to work.

Finally, recall that upon transformation of S to S̄ we do not consider the
right hand-side of the rules’ conditions (i.e., the terms ri in the rule R have
disappeared from S̄). We allow this because the algorithm in Fig. 2 computes an
over-approximation of the rule reachability problem. Hence, by not considering
the terms ri in the semantic rules we include in the inspection tree a superset
of the reachable rules. As another consequence, the maySE set is also over-
approximated namely, we infer more potential side-effect syntactic constructs.
However, observe that the actual side-effect rules are guaranteed to appear in the
maySE set, again, because the algorithm relies on the existence of a maySE rule
descendant to induce the side-effect character on a parent rule. Nevertheless, we
could consider the terms ri as well by augmenting the algorithm with additional
pruning of the inspection tree. We leave this augmentation as future work.
Example 2. We exemplify the running of the algorithm in Fig. 2 over the seman-
tics of the WhileL language, with the set of side effect sources formed by the
rules for the operators remove, insert, and extract. We recall the definition of
these operators:

A Generic Program Slicing Technique based on Language Definitions 11

op remove : ENV Variable -> ENV .

op insert : Value RWBUF -> RWBUF .

op extract : RWBUF -> PairValueRWBUF .

eq [rmv1] : remove(mt, X) = mt .

eq [rmv2] : remove(X = V ro, X’)

= if X == X’ then ro else X = V remove(ro, X’) fi .

eq [ins] : insert(V, buf) = buf V .

eq [ex1] : extract(nb) = err .

eq [ex2] : extract(V buf) = (V, buf) .

The set A of rules that produce modifications to the program state is formed
by the rules labeled rmv2, ins, ex2, which are the only statements (either
equations or rules) that modify the ENV or the RWBUF without using auxil-
iary functions. Also, Com is the language syntax sort LS, ENV and RWBUF give
the program state sorts PS, while the “root” term is given by the opera-
tor op <_,_,_> : Com ENV RWBUF -> Statement ., i.e., runPgm is < C:Com,
E:ENV, B:RWBUF >.

So, after the initial assignments before the loop, the variables in the algo-
rithm are assigned as follows:
maySE = {rmv2, ins, ex2}, noSE = ∅, rMix = ∅,

iT = ∀R ∈ S̄, R :: < C , E , B >

= AsR→ Inc1→ Inc2→ SdE→ IfR1→ . . . → WriteR→ ReadR1→ReadR2

lBorder = AsR.

During the first iteration of the loop, the variable Rcurr is AsR. We recall
that AsR represents the following Horn clause:

[AsR] < X := e, st, rwb > :- < e, st > ; < skip, st’[v / X], rwb > .

So l1 is the term < e, st >, with variables e:Exp and st:ENV, while r is
the term < skip, st’[v / X], rwb >, with variables st’:ENV, X:Var, v:Num,
and rwb:RWBUF. Consequently, successors(AsR) is given by the following list of
hypernodes ∀R ∈ S̄, R :: l1 −→ ∀R ∈ S̄, R :: r , which evaluates to the following

hypernodes: VarR→OpR , and respectively upd . Note that the rule rmv2 cannot
be applied over the subterm st of l1 because st is a valid term, formed only with
the constructors of ENV. Hence, the loop executes the branch with the condition
newSuccessors(Rcurr) 6= ∅, and the iteration tree iT becomes:

AsR→ Inc1→ Inc2→ SdE→ IfR1→ . . . → WriteR→ ReadR1→ReadR2

VarR→OpR −→ upd

Note that the color code in iT signifies that lBorder is the stack VarR, AsR
(i.e., red for lBorder). The second iteration of the loop makes Rcurr the Horn
clause:

12 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

[VarR] < X, st > :- < st(X), st > .

So the same branch of the loop as before is executed and iT becomes:

AsR→ Inc1→ Inc2→ SdE→ IfR1→ . . . → WriteR→ ReadR1→ReadR2

VarR→OpR −→ upd

lkup

The next iteration of the loop finds that lkup is recursive, where

[lkup] (X = V ro)(X’) :- if X == X’ then V else ro(X’) fi .

because lkup ∈ successors(lkup) = lkup (as ro(X’) unifies with lkup), so
lBorder becomes the stack lkup, lkup, VarR, AsR. Hence, in the following itera-
tion of the loop, the top lkup becomes an element of rMix and, upon backtrack-
ing, the next lkup becomes an element of noSE (since it does not have a maySE
successor rule). For the same reason backtrack(iT , VarR, AsR) makes VarR an
element of noSE, and lBorder becomes OpR, AsR.

The next few iterations of the loop make OpR an element of both rMix and
noSE in the same way as lkup. We skip over these steps and explain from the
iteration with the lBorder stack containing upd, AsR.

Since successors(upd)= rmv1→rmv2 which is a hypernode that contains a
maySE rule, i.e., rmv2, then the rule upd becomes an element of maySE, via
the last branch in the algorithm. Also, during backtrack(iT , upd, AsR) also AsR
becomes an element of maySE, because of its maySE successor rule in the hy-
pernode upd . After these steps, the inspection tree has the following structure:

AsR→ Inc1→ Inc2→ SdE→ IfR1→ . . . → WriteR→ ReadR1→ReadR2

VarR→OpR −→ upd

lkup

lkup

rmv1→rmv2...

After the algorithm in Fig. 2 is applied to the WhileL language, we identify
the following set of syntactic constructs that may produce side-effects: the as-
signment statement _:=_, the input/output statements Read_ and Write_ and
the two special addition-based statements _++ and _+=_. Note that if we consider

A Generic Program Slicing Technique based on Language Definitions 13

only the program environment as the side effect source (i.e., the set A is {rmv2})
the algorithm produces all the previous side-effect syntactic constructs, besides
Write_. The reason is that WriteR rule was previously labeled as maySE only
due to the ins rule that appeared among its descendants. Since now A = {rmv2},
then ins is not maySE, so WriteR is labeled noSE.

The set of basic side-effect syntactic constructs together with the term rep-
resentation of the program and the slicing criterion define the input state for the
second step of our slicing algorithm which computes a slice of the program.

Definition 2. We say that a program term p produces side-effects over a vari-
able v w.r.t. a side-effect set SE if the top operator of p is in SE and the variable
v is a designated subterm of p. We define a valid slice of a program w.r.t. a slicing
criterion V (i.e., a set of program variables) as a superset of program subterms
that (indirectly) produce side-effects over some variables in V .

The second slicing step is a fixpoint iteration which applies the current slicing
criterion over the program term in order to discover new subterms of the program
that use the slicing criterion, i.e., the program subterm produces side-effects over
some variables in the slicing criterion. When a new subterm is discovered, the
slicing criterion is updated by adding the variables producing the side-effects
(e.g., the variables in the second argument of _:=_). We iterate this until the
slicing criterion remains unchanged, so no new subterms can be discovered and
added to the result, i.e., the slice set.

For example, the iterations of the second slicing step for the program in
Fig. 1, the side-effect constructs obtained in Example 2, and the slicing criterion
{p} are listed in Fig. 3. Namely, the set {p} is applied on the set of side-effect
syntactic constructs to produce the slice subterms used on the term program:
p:= , Read p, Write p, p++, p+= . Only the subterm p:=_ is matched in the
program, on the term assignment for p. This iteration results are shown in the
first row, in Fig. 3. Because of the matched assignment p := p *. i, the slicing
criterion becomes {p, i}. Under the new slicing criterion, the set of side-effect
syntactic constructs is {i:=_, Read i, Write i, i++, i+=_}. This time, the
term slicing of the program matches the two Read i instructions and the Write
(i-.j) (the second row in Fig. 3). The algorithm reaches the fixpoint when the
slicing criterion is the set {p, i, j}. The final iteration is graphically represented
in Fig. 4, where the slice on the term program is identified based on the set
of subterms inside surrounded area (inside a triangle or a diamond). Note that
the upward triangles surround the subterms discovered at the first iteration, the
downward triangle surrounds the second iteration new terms, while the diamond
corresponds to the third iteration new terms. Also, note that the subterm Read i
from the resulted slice set appears twice in the initial program.

The second slicing step algorithm terminates, because there exists a finite
set of program subterms, and it produces a valid slice, because it exhaustively
saturates the slicing criterion. Moreover, the result is a minimal slice w.r.t. the
set of side-effect syntactic constructs given as argument. However, the obtained
slice is not minimal mainly because the set of side-effect syntactic constructs
obtained in the first slicing step is already an over-approximation.

14 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

Iteration Slicing Computed slice

variables (identified subterms)

1 4 p p := 1, p := p ∗ . i

2 5 p, i Read i, p := 1, Write (i− . j), p := p ∗ . i

3 ♦ p, i, j Read i, Read j, p := 1, Write (i− . j), p := p ∗ . i

4 . p, i, j Read i, Read j, p := 1, Write (i− . j), p := p ∗ . i

Fig. 3. Program slicing as term slicing - the fixpoint iterations

:=

s _+._

Write_

-.

:=

Read_

;

i

while_do_

Not_

p,i,j

slice_wrt_dd_

:= Read_ Write_ _++ _+=_

Equal

s 0

Read_

j

;

;

;

:=

p 1

i 0

;

;

;

i j

s i

:=

p _*._

p i

Read_

i

Fig. 4. Program slicing as term slicing—the result subterm

Based on the obtained slice set we can add structure to the slicing result by
identifying the “skeleton” term that contains the slice set. For example, we can
decide to keep the composed statements that contain subterms in the slice set.
As such, the while_do_ statement from the example program has subterms in
the slice set (e.g., Read i) so we add it to the “structured” slice. The resulting
program representing the “structured” slice is:

Read i;

Read j;

p := 1;

While _ do {

Write(i -. j);

p := p *. i;

Read i; }

A Generic Program Slicing Technique based on Language Definitions 15

5 System Description

We present in this section our Maude prototype and some details about its
implementation.

5.1 Slicing Session

The tool is started by loading the slicing.maude file available at http://
maude.sip.ucm.es/slicing. It starts an input/output loop where modules and
commands can be introduced. Once the module in Section 3 has been introduced,
we have to introduce the sort of variables and the sorts where we want to de-
tect side effects. With this information, the tool can compute the rules and the
functions generating side effects:

Maude> (set variables sort Var .)

Var selected as sort for the variables.

Maude> (set side-effect sorts ENV RWBUF .)

ENV RWBUF selected as side effect sorts.

The slicing command follows the notation shown in the previous sections.
The keyword slice is followed by the program we want to debug, the keyword
wrt and the list of variables that will be used by the second step of the algorithm
described in the previous section. The tool outputs the label of the rules inducing
side effects and the name of the variables that have been computed during the
slicing stage:

Maude> (slice (< Read i ; Read j ;

s := 0 ; p := 1 ;

While Not Equal(i, 0) Do

Write (i -. j) ; s := s +. i ;

p := p *. i ; Read i,

X:ENV, Y:RWBUF >) wrt p .)

The rules causing side effects are: AsR Inc1 ReadR1 SdE WriteR

The variables obtained by the slicing process are: p i j

5.2 Implementation Details

Exploiting the fact that rewriting logic is reflective, a key distinguishing feature
of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [6, Chapter 14], a feature that makes Maude remarkably
extensible and that allows many advanced metaprogramming and metalanguage
applications. This powerful feature allows access to metalevel entities such as
specifications or computations as usual data. In this way, we can manipulate the
modules introduced by the user, develop the slicing process, and implement the
input/output interactions in Maude itself.

http://maude.sip.ucm.es/slicing
http://maude.sip.ucm.es/slicing

16 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

More specifically, our tool traverses the rules in the module indicated by
the user to find the rules that modify the state of the terms modified by the
side effects (ENV and RWBUF in our example). With these rules and using the
predefined unification commands available in Maude our prototype can generate
and traverse the hypernodes, thus computing the first step of the algorithm in the
previous section. For the second part, it checks the left-hand sides of these rules,
discarding the information of the side effects terms to focus on the instructions.
It then uses this information to traverse the initial term (containing the program
we are analyzing) checking the terms that appear in each of these terms. If any
of the variables given as slicing criterion are used, then the rest of the variables
appearing in this term are added to the current set and the process is repeated
until the fixpoint is reached.

6 Concluding Remarks and Ongoing Work

We presented a two-phased technique for program slicing based on the formal
executable semantics of a WHILE programming language, given as a rewriting
logic theory. The first phase, called language semantics specification analysis
considered an exhaustive inspection of the language semantics to extract a set
of side-effect language constructs. The second phase was to perform program
slicing as term slicing, using the previously computed set of primitives, the in-
put (term representation of the) program and the slicing criterion. Both the
formal definition of our language and the semantics-based slicing technique are
implemented and tested in the Maude system.

We plan to extend this work on the following several directions. First, we
incrementally analyze the impact on adding various side-effect constructs to the
WhileL language, such as pointers, exceptions or file-manipulation operations.
Second, we address other types of programming languages and their specific side-
effect constructs. For example, if we consider assembly languages, it happens
that various arithmetic instructions visibly modify a particular register value,
and invisibly affect subsequent conditions in the program, via modifications of
special arithmetic flags (i.e. overflow, sign, etc). Third, we improve the algorithm
in the first step in our slicing technique in order to obtain a better (smaller) over-
approximation of the produced set of side-effect syntactic constructs. We believe
that pursuing these directions would further improve the current semantics-
based program slicing technique and produce a useful design and analysis tool
for language developers.

References

1. H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging with dynamic slicing
and backtracking. Software - Practice and Experience, 23(6):589–616, 1993.

2. M. Alpuente, D. Ballis, J. Espert, and D. Romero. Backward trace slicing for
rewriting logic theories. In N. Bjørner and V. Sofronie-Stokkermans, editors, Proc.
of the 23rd International Conference on Automated Deduction, CADE 2011, LNAI
6803, pp. 34–48. Springer, 2011.

A Generic Program Slicing Technique based on Language Definitions 17

3. M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Backward trace slicing for
conditional rewrite theories. In N. Bjørner and A. Voronkov, editors, Proc. of the
18th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, LPAR 2012, LNCS 7180, pp. 62–76. Springer, 2012.

4. F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pp. 445–532. Elsevier, 2001.

5. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude: A High-Performance Logical Framework, LNCS 4350.
Springer, 2007.

7. J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In Proc. of
the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL 1995, pp. 379–392. ACM Press, 1995.

8. J. Field and F. Tip. Dynamic dependence in term rewriting systems and its appli-
cation to program slicing. Information & Software Technology, 40(11-12):609–636,
1998.

9. M. Harman and S. Danicic. Using program slicing to simplify testing. Journal of
Software Testing, Verification and Reliability, 5:143–162, 1995.

10. S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural slicing using depen-
dence graphs. ACM Transactions on Programming Languages Systems, 12(1):26–
60, 1990.

11. R. Jhala and R. Majumdar. Path slicing. In Proc. of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, PLDI 2005, pp.
38–47. ACM Press, 2005.

12. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. The-
oretical Computer Science, 285(2):121–154, 2002.

13. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

14. A. Riesco. Using semantics specified in Maude to generate test cases. In A. Roy-
choudhury and M. D’Souza, editors, Proc. of the 9th International Colloquium on
Theoretical Aspects of Computing, ICTAC 2012, LNCS 7521, pp. 90–104. Springer,
2012.

15. C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper. Faster WCET flow
analysis by program slicing. In Proc. of the 2006 ACM SIGPLAN Conference on
Languages, Compilers and Tools for Embedded Systems, LCTES 2006, pp. 103–112.
ACM Press, 2006.

16. J. Silva and O. Chitil. Combining algorithmic debugging and program slicing.
In Proc. of the 8th ACM-SIGPLAN International Symposium on Principles and
Practice of Declarative Programming, PPDP 2006, pp. 157–166. ACM Press, 2006.

17. L. Sterling and E. Y. Shapiro. The Art of Prolog - Advanced Programming Tech-
niques. MIT Press, 1986.

18. C. Tian, M. Feng, and R. Gupta. Speculative parallelization using state separation
and multiple value prediction. In Proc. of the 2010 international symposium on
Memory management, ISMM 2010, pp. 63–72. ACM Press, 2010.

19. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121–189, 1995.

20. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming, 67:226–293, 2006.

21. M. Weiser. Program slicing. In Proc. of the 5th international conference on Soft-
ware engineering, ICSE ’81, pp. 439–449. IEEE Press, 1981.

	A Generic Program Slicing Technique based on Language Definitions

