
HAL Id: hal-01468174
https://inria.hal.science/hal-01468174

Submitted on 15 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Network-Aware Evaluation Environment for Reputation
Systems

Alessandro Celestini, Rocco De Nicola, Francesco Tiezzi

To cite this version:
Alessandro Celestini, Rocco De Nicola, Francesco Tiezzi. Network-Aware Evaluation Environment
for Reputation Systems. 7th Trust Management (TM), Jun 2013, Malaga, Spain. pp.231-238,
�10.1007/978-3-642-38323-6_17�. �hal-01468174�

https://inria.hal.science/hal-01468174
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Network-aware Evaluation Environment for
Reputation Systems?

Alessandro Celestini1, Rocco De Nicola1, and Francesco Tiezzi1

IMT Institute for Advanced Studies Lucca, Italy
{alessandro.celestini,rocco.denicola,francesco.tiezzi}@imtlucca.it

Abstract. Parties of reputation systems rate each other and use ratings to com-
pute reputation scores that drive their interactions. When deciding which rep-
utation model to deploy in a network environment, it is important to find the
most suitable model and to determine its right initial configuration. This calls for
an engineering approach for describing, implementing and evaluating reputation
systems while taking into account specific aspects of both the reputation systems
and the networked environment where they will run. We present a software tool
(NEVER) for network-aware evaluation of reputation systems and their rapid pro-
totyping through experiments performed according to user-specified parameters.

Keywords: Reputation systems, Network-awareness, Evaluation tool

1 Introduction

In recent years, we have seen an increasing use of reputation systems in different areas
of ICT, from e-commerce to different forms of open computer networking, such as P2P,
ad-hoc, or sensor networks. This phenomenon is likely to continue, due to the success of
networked applications (like social networks or other Web 2.0 technologies) and to the
need, in such environments, of instruments to build up relationships of trust among the
interacting parties. In order to establish such trust relationships, parties in a reputation
system are free to interact and rate each other after any interaction, such ratings are then
used to derive parties’ reputation scores. The computed reputation score is a collective
measure of parties’ trustworthiness and is used when selecting the party to interact with.

Parties in a reputation system can exchange ratings and interact by relying on a
network infrastructure. If we take as a starting point a centralised architecture that is
widely used for networked trust infrastructures reported in Figure 1, we have a rating
server collects ratings from system’s parties and makes them publicly available, while
a search server allows parties to find resource providers in the system. Every party can
play the role of a client, of a provider, or both, and may offer different kinds of re-
sources (services, computational and storage resources, etc.). Whenever a party needs
a resource, first it queries the search server to get the list of parties providing it, and
then retrieves from the rating server the ratings of each provider in the list. Thus, to
choose a provider, it computes the reputation scores of each of them and selects the
one with the highest reputation score. Finally, after the interaction, it rates the provider

? This work has been partially sponsored by the EU project ASCENS, 257414.



2

according to the quality of the provided resource. On top of the general infrastruc-
ture just described, different kinds of reputation system can be layered, which mainly
differ for the model they use to aggregate ratings when computing reputation scores.

Rating serverSearch server

Party 1

. . .

Network

Ratings

Party 2 Party 3

Party n

Fig. 1: General infrastructure of a reputation system

Several models have been
proposed and once a
reputation system has to
be deployed in a network
environment, we might
ask which reputation
model is more suitable
for the given environment
and how the reputation
system should be config-
ured in order to meet the
desired behaviour. This
calls for an engineering
approach for describing,
implementing and evalu-
ating reputation systems
while taking into account real-world implementation details of such systems and of the
network environment where they have to be deployed.

In this paper, we address this issue by introducing NEVER a software tool for
network-aware evaluation of reputation systems. On the one hand, we provide a frame-
work for rapidly developing Java-based implementations of reputation system models
and for easily configuring different networked execution environments on top of which
the systems will run. On the other hand, we offer a tool that automatically performs
experiments on the reputation system implementations according to user-specified pa-
rameters; this enables the study of their behaviour while executing on given network
infrastructures. The main novelty of our approach, with respect to other proposals in
the literature with a similar aim, is that we allow the evaluation of implemented reputa-
tion systems through experiments on real networks, rather than performing simulation
of models of reputation systems that abstract from many details. In this way, given a
specific network environment, we can study the system behaviour to find the config-
uration that better meets the system requirements by tuning its parameters (reputation
model, response timeouts, resource quality evaluation, ratings aging, etc.). Moreover,
the analysed systems could be then directly used in the corresponding end-user appli-
cations (we will come back on this point in Section 4).

Summary of the rest of the paper. Section 2 describes the architecture and functional
principles of our tool NEVER. Section 3 provides a brief overview of the tool compo-
nent dealing with networking aspects. Finally, Section 4 concludes the paper by also
reviewing some of the related work and suggesting directions for future work.

Further details on theoretical and implementation aspects of the reputation models
currently implemented in the tool, as well as reports on performed analyses, appear in
the companion technical report [5], which can be found on the NEVER web site [1].



3

2 The NEVER tool

In this section, we present the architecture and the workflow of NEVER (Network-
aware EValuation Environment for Reputation systems), graphically depicted in Fig-
ure 2. The NEVER tool consists of three main components: (1) the experiment manager,
(2) the network infrastructuring support, and (3) the reputation models library.

The experiment manager is the components playing the main role, because it is in
charge of managing the execution of each experiment. An experiment consists of a user-
specified number of runs, each run performed with the same configuration. The number
of runs and their duration, together with other experiments characteristics, are defined
by users through configuration parameters.

The network infrastructuring support provides the libraries (i.e., classes and inter-
faces) required to create and set up a Klava net (see Section 3) implementing the general
infrastructure graphically depicted in Figure 1. Each element of the infrastructure is a
node hosted by a (possibly remote and/or virtual) machine. The NEVER tool takes as
input the addresses of the hosting machines and automatically activates the nodes form-
ing the wanted network infrastructure. We refer to Section 3 for further details on the
network infrastructure library supporting our experiments.

y

x

y
x

ReputationModelRating

Binary
Rating

Beta
Model

ML
Model

.

.

.

.

.

.

Reputation Models Library

Experiment Manager

ACTIVATE GET EXPERIMENT
DATA

Configuration
parameters

.properties INPUT

NEVER

y

x

OUTPUT

Evaluation
results

Network
Infrastructuring 

Support

Klava net

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

Fig. 2: NEVER architecture and workflow

The reputation
models library acts
as a framework al-
lowing the user to
define the trust and
reputation models
under evaluation.
The library is a Java
package containing
a number of abstract
classes and interfaces
necessary to imple-
ment the models. In
this way, the NEVER
tool is customizable
and extendible by the
user. Specifically, a
reputation model is
defined by a class
implementing the ReputationModel interface and, possibly, a class extending the
abstract class Rating. The former class defines how reputation scores are computed,
which rating values are used by the system and how parties in the system evaluate
interactions. The latter class defines the kind of rating values and how to manage
them. Thus, the addition of new reputation models to NEVER can be achieved by
implementing ReputationModel and, if necessary, by extending Rating.

We describe now the NEVER workflow, by lingering on the main features of the
experiment manager component. The tool takes as input a set of configuration parame-
ters, written in a .properties file as pairs of the form key = value. Such parameters are



4

used by the experiment manager to instantiate and carry out an experiment. First, the
manager creates the network on top of which will be run the experiment. A node is cre-
ated for each of the two servers and for each party in the system. Once the network is
set up, the reputation system (configured according to user’s parameters) is deployed on
the network and the experiment starts, i.e. network components are enabled and system
parties interact and rate each other. During the activity of the network, data about inter-
actions are stored in appropriate files for a later analysis. Experiment runs are repeated
in order to reach the desired precision; thus, the manager starts and stops runs till the
last run is accomplished. Afterwards, data are analysed and provided as output, both in
form of textual files and charts.

We conclude this section by commenting on the relevant configuration parameters.
Through such parameters it is possible to specify the number of parties in the system
and the addresses of the machines where parties have to run. For each party, a new
Klava node is automatically created and deployed in the associated hosting machine.
The tool also supports a ‘local only’ modality, where all Klava nodes are deployed in
the same machine running the tool. Such modality can be useful to compare reputation
systems in presence or absence of networking aspects affecting the evaluation.

A specific configuration parameter is used to set the main reputation model, which
is used during the experiment to drive the interactions among parties. In fact, when a
party is looking for a provider of a specific resource, it computes the providers’ repu-
tations and selects for the interaction the most trusted one, i.e. the party (or one of the
parties) with the highest reputation value. Besides the main model, it is possible to give
a list of trust and reputation models to be compared during the experiment: each party’s
reputation is computed according to all models specified in such list. Values of party’s
reputation are returned for each run and, at the end of the experiment, as a mean value
over all runs. Moreover, the user can require to randomly select the providers, by thus
ignoring the choice of the providers based on the main reputation model. Such modality
is indeed often used in our experiments, because it gives the opportunity of evaluating
models performances by comparing party reputations on the basis of approximately the
same amount of ratings for each party.

A group of configuration parameters regulates parties’ behaviour. The user specifies
a set of possible party’s behaviours and the percentage of parties with each given be-
haviour. Through such information, the experiment manager assigns a behaviour to each
party. Moreover, it is possible to set parties’ initial reputation by specifying the values
and the number of their initial ratings. Such ratings determine the initial parties reputa-
tion computed by the system. In the default case, parties’ behaviours are assumed to be
fixed, but a changeable behaviour can be configured. In this case, the user sets when the
variation has to happen and the magnitude of the variation. Currently, the variation im-
plemented is negative, i.e. party’s behaviour gets worse after variation. Several studies
(see, e.g., [11, 16, 19]) use similar approaches for the evaluation of reputation models.

Finally, the configuration parameters allow the user to set two threshold values: the
maximum delay and the maximum waiting time. The first parameter sets the maximum
delay after which a resource is considered unsatisfactory, i.e. once the party receives the
resource it checks if the arrival time exceeds the maximum delay and, in such a case, a
negative rating is given to the provider no matter the quality of the resource. The second



5

parameter sets the maximum time that a party will wait for a resource; expired this time
a new provider is selected by the party and no rating value is given. In this way, a party
will not wait indefinitely for a resource.

The NEVER tool is developed in Java, by exploiting freely available third-party
libraries. Source and binary files of NEVER can be found at [1].

3 Network infrastructuring support

The network infrastructuring support of NEVER provides an API that allows the ex-
periment manager to create different networks underlying the reputation systems to
evaluate. To this aim, this tool component exploits the Klava library. In this section, we
briefly introduce Klava and present the functionalities of each package component.

Klava. The Java library Klava [3] provides the run-time support for Klaim actions
within Java code. Klaim [7] is a formal coordination language specifically designed
for modelling mobile and distributed applications and their interactions, which run
in a network environment. Klaim provides communication primitives enabling tuple-
based interaction à la Linda [9], which decouples the communicating processes both in
space and time. Exchanged data are sequences of values, i.e. tuples. Communication
is achieved via distributed multisets of tuples, called tuple-spaces, where processes in-
sert, read and withdraw tuples. The data retrieving mechanism uses associative pattern-
matching to find the required data in the tuple-space.

The network infrastructuring package. The network infrastructuring package speci-
fies three different kinds of nodes that take part in the Klava net: a rating server node,
a search server node and a user node. Each of these nodes implements a component of
the infrastructure graphically depicted in Figure 1.

The rating server node serves as public database for collecting parties’ ratings and
executes the process RatingServerProcess. This process is in charge of collecting
data produced by each experiment run.

The search server node assists parties while seeking a resource provider and exe-
cutes the process SearchServerProcess. Such process waits for search requests sent
by parties. Specifically, parties send requests to the server stating the type of the re-
source they want from the provider. Then, SearchServerProcess looks in the local
tuple space for available providers offering such resource: for each provider matching
the request, the process sends its address to the requesting party. The set of tuples sent
to the party forms a list of provider addresses.

The user node implements a generic party; nodes of this kind interact to ask and
provide resources and, after any interaction, rate each other. Two processes run on the
user node1: the ProviderProcess and the ClientProcess. The former process im-
plements the functionalities of a provider: when a new resource request coming from a
client is received, the resource is selected and sent to the client. The resource selection
consists of determining its quality according to the provider’s behaviour; in fact, the
actual provision of the resource is not relevant for our studies.

1 Depending on the processes running in its node, a party can play the role of a client, of a
provider, or both. We consider here the latter case, which is the most general.



6

The ClientProcess seeks providers for the resource it is looking for, and selects
the most trusted one for the next interaction. Specifically, it determines the resource type
it wants to request, asks the search server to find a provider for the given resource type
and selects, among the providers returned by the search server, the most trusted one.
Then, it checks if the reputation of such provider is higher than the minimum reputation
value defined in the configuration file. If this check is positive, the process sends a
request for the resource to the selected provider, otherwise it starts again the procedure
from the beginning. Notably, the waiting time of a requested resource is bounded by a
time-out specified in the configuration file. When the resource is received the process
computes a rating value for the provider and sends it to the rating server.

4 Concluding remarks

In this paper we briefly presented NEVER, a network-aware tool for evaluating
trust and reputation systems. The design of NEVER is based on the Klaim formal

Fig. 3: Reputation trend of four parties

specification of trust and reputa-
tion system presented in [6]. We
used the Java library Klava for
implementing the models spec-
ified in Klaim. NEVER allows
the rapid prototyping and test-
ing of reputation system models
in a real network environment,
thus realizing a generic testbed
for evaluating trust and reputa-
tion systems. We discussed the
architecture of NEVER showing
its logical structure.

In the companion technical
report [5], we show how NEVER
works by means of experimental
data obtained through the evaluation of some of the implemented models. As an ex-
ample, Figure 3 reports a graph produced as output by NEVER showing the reputation
trends of four parties with respect to the number of available ratings for each of them.

Related work. Among the many works in the literature whose goal is the evaluation
and comparison of reputation systems, to the best of our knowledge, our contribution
is the first effective tool allowing the evaluation in a real networked execution envi-
ronment. Several works base their evaluation on a ‘pen-and-paper’ mathematical study
of the models, without taking into account how they will be implemented and exe-
cuted over distributed systems. For example, a formal framework for the comparison
of probabilistic trust models, based on KL-divergence, is proposed in [18]. In this work
KL-divergence is used as a measure of the quality of reputation functions. With the
same purpose we exploit the notions of bayes and worst risk presented in [4]. NEVER
computes empirical values of such risk functions for models set in the configuration file.
Results of such computation are returned as output and are used for models evaluation.



7

Other works use simulation techniques for the evaluation of trust and reputation
systems. For example in [14], a simulator implemented in Java is proposed as testbed
(the ART testbed) enabling a competition forum for evaluating trust systems. In this
case, no networking or other real world aspects are taken into account. Other exam-
ples of testbed are TREET [13] and the one proposed in [10]. The latter testbed is used
for the evaluation of robustness of reputation systems. Specifically, this proposal fo-
cuses on robustness against unfair ratings, i.e. against parties that release scores that
intentionally under-estimate interaction outcomes. The TREET testbed is proposed as
an alternative to ART, which is considered not well-suited for general-purpose experi-
mentation of reputation systems (it has, indeed, agents evaluation as its main purpose).
Instead, TREET is specifically designed to support general-purpose experimentation
and evaluation.

All these proposals are simulators or designs of testbeds that focus on marketplace
applications. Our proposal, instead, does not fix a specific environment in which par-
ties interact, but we use interactions as an abstraction of any parties relation. Moreover,
we explicitly focus on probabilistic trust and reputation systems and on how they are
evaluated. Our work aims at filling the gap between simulation and implementation of
reputation systems, where networking aspects may play an important role when choos-
ing and tuning trust and reputation systems. Indeed such aspects must be considered
when implementing these systems. Specifically, problems such as how to rate parties
when interactions are affected by network delays, or how to rate parties that are sporad-
ically connected, have to be addressed. For this reason, reputation systems in NEVER
are specified so that such problems can be taken into account by users when evaluating
the systems. Indeed, they can be tuned on the basis of the features of the underlying
network infrastructure exploited by NEVER for the execution.

Future work. We intend to continue our analysis programme by considering other rep-
utation models proposed in the literature. Some of the models that we plan to consider
in the near future are those surveyed in [17, 12].

Apart from considering richer reputation models, we intend to extend our investi-
gation to reputation systems over network architectures that rely on distributed rating
servers, rather than a single centralised one. Examples of such systems can be found in
literature; where adaptations of trust models for decentralised architectures have been
proposed. A reputation model adapted to ad-hoc networks for enhancing collaborations
is proposed in [15]. For evaluating the relationships among devices in pervasive com-
puting environments, a trust management scheme is introduced in [8], while [2] presents
data structures and algorithms for assessing trust in a peer-to-peer environment. In par-
ticular, we intend to study how different underlying network architectures affects the
performances of a given reputation system.

It is our intention to extend the tool to process real data from applications. The tool
would be embedded in real applications and used to evaluate reputations systems in
such environments. Applications could use reputation models in two different modali-
ties: active or passive. In the active case, parties would compute reputation scores and
use them to drive their interactions. In this modality the behaviour of an application
would be modified by the deployed reputation system. In the passive case, the tool
would collect rating values, compute reputation scores and just store them, without us-



8

ing such data to drive parties’ interactions. The computed information would thus be
used only for evaluating reputation systems. The passive modality would be useful in
case of applications already deployed and in production. In this case it is important to
understand how the application’s behaviour would change before altering it. The passive
modality could be also used for monitoring applications relying on existing reputation
systems and contrast their reputation models with respect to the models implemented
in our tool.

References
1. NEVER: Network-aware Evaluation Environment for Reputation Systems, 2013. Web site:
http://sysma.lab.imtlucca.it/tools/never/.

2. K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system. In CIKM,
pages 310–317. ACM, 2001.

3. L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience, 32(14):1365–1394, 2002.

4. M. Boreale and A. Celestini. Asymptotic Risk Analysis for Trust and Reputation Systems.
In SOFSEM, volume 7741 of LNCS, pages 169–181. Springer, 2013.

5. A. Celestini, R. De Nicola, and F. Tiezzi. Network-aware Evaluation Environment for
Reputation Systems. CSA Technical Report #5/2013, IMT Institute for Advanced Studies
Lucca, 2013. Available at http://eprints.imtlucca.it/1537/.

6. A. Celestini, R. De Nicola, and F. Tiezzi. Specifying and Analysing Reputation Systems
with a Coordination Language. In SAC. ACM, 2013. To appear.

7. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents Interac-
tion and Mobility. Transactions on Software Engineering, 24(5):315–330, 1998.

8. M.K. Deno and T. Sun. Probabilistic trust management in pervasive computing. In EUC,
volume 2, pages 610–615. IEEE Computer Society, 2008.

9. D. Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

10. A. A. Irissappane, S. Jiang, and Jie Zhang. Towards a comprehensive testbed to evaluate the
robustness of reputation systems against unfair rating attack. In UMAP Workshops’12, 2012.

11. A. Jøsang and R. Ismail. The beta reputation system. In Bled Conference on Electronic
Commerce, 2002.

12. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems, 43(2):618–644, 2007.

13. R. Kerr and R. Cohen. TREET: the Trust and Reputation Experimentation and Evaluation
Testbed. Electronic Commerce Research, 10:271–290, 2010.

14. K.K. Fullam et al. A specification of the Agent Reputation and Trust (ART) testbed: exper-
imentation and competition for trust in agent societies. In AAMAS, pages 512–518. ACM,
2005.

15. C.T. Nguyen, O. Camp, and S. Loiseau. A bayesian network based trust model for improving
collaboration in mobile ad hoc networks. In RIVF, pages 144 –151. IEEE, 2007.

16. J. Sabater and C. Sierra. Regret: reputation in gregarious societies. In AGENTS, pages
194–195. ACM, 2001.

17. J. Sabater and C. Sierra. Review on computational trust and reputation models. Artif. Intell.
Rev., 24:3360, 2005.

18. V. Sassone, K. Krukow, and M. Nielsen. Towards a formal framework for computational
trust. In FMCO, volume 4709 of LNCS, pages 175–184. Springer, 2006.

19. G. Zacharia and P. Maes. Trust management through reputation mechanisms. Applied Arti-
ficial Intelligence, 14(9):881–907, 2000.


